Journal of Mathematical Biology

, Volume 66, Issue 4–5, pp 915–933 | Cite as

Daphnias: from the individual based model to the large population equation



The class of deterministic ‘Daphnia’ models treated by Diekmann et al. (J Math Biol 61:277–318, 2010) has a long history going back to Nisbet and Gurney (Theor Pop Biol 23:114–135, 1983) and Diekmann et al. (Nieuw Archief voor Wiskunde 4:82–109, 1984). In this note, we formulate the individual based models (IBM) supposedly underlying those deterministic models. The models treat the interaction between a general size-structured consumer population (‘Daphnia’) and an unstructured resource (‘algae’). The discrete, size and age-structured Daphnia population changes through births and deaths of its individuals and through their aging and growth. The birth and death rates depend on the sizes of the individuals and on the concentration of the algae. The latter is supposed to be a continuous variable with a deterministic dynamics that depends on the Daphnia population. In this model setting we prove that when the Daphnia population is large, the stochastic differential equation describing the IBM can be approximated by the delay equation featured in (Diekmann et al., loc. cit.).


Birth and death process Age and size-structured populations Stochastic interacting particle systems Piecewise deterministic motion  Large population limits 

Mathematics Subject Classification (2000)

92D40 60J80 60K35 60F99 



This work benefitted from the support from the “Chaire Modélisation Mathématique et Biodiversité of Veolia Environnement—Ecole Polytechnique—Museum National d’Histoire Naturelle—Fondation X”.


  1. Champagnat N, Ferriére R, Méléard S (2006) Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor Pop Biol 69:297–321Google Scholar
  2. Champagnat N, Ferriére R, Méléard S (2008) Individual-based probabilistic models of adaptive evolution and various scaling approximations. In: Dalang, R.C., Dozzi, M., Russo, F (eds) Seminar on Stochastic Analysis, Random Fields and Applications V, Centro Stefano Franscini, Ascona, May 2005. Progress in Probability vol. 59, Birkhauser, pp 75–114Google Scholar
  3. Diekmann O, Gyllenberg M (2012) Equations with infinite delay: blending the abstract and the concrete. J Diff Equ 252(2):819–851Google Scholar
  4. Diekmann O, Metz JAJ (2010) How to lift a model for individual behaviour to the population level? Phil Trans Roy Soc London B 365:3523–3530CrossRefGoogle Scholar
  5. Diekmann O, Metz JAJ, Kooijman SALM, Heymans HJAM (1984) Continuum population dynamics with an application to Daphnia magna. Nieuw Archief voor Wiskunde 4:82–109Google Scholar
  6. Diekmann O, Gyllenberg M, Metz JAJ, Thieme HR (1998) On the formulation and analysis of general deterministic structured population models I Linear theory. J Math Biol 36:349–388MathSciNetMATHCrossRefGoogle Scholar
  7. Diekmann O, Gyllenberg M, Huang H, Kirkilionis M, Metz JAJ, Thieme HR (2001) On the formulation and analysis of general deterministic structured population models. II. Nonlinear Theory. J Math Biol 43:157–189MathSciNetMATHCrossRefGoogle Scholar
  8. Diekmann O, Gyllenberg M, Metz JAJ (2003) Steady state analysis of structured population models. Theor Pop Biol 63:309–338MATHCrossRefGoogle Scholar
  9. Diekmann O, Getto P, Gyllenberg M (2007) Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. SIAM J Math Anal 39(4):1023–1069MathSciNetMATHCrossRefGoogle Scholar
  10. Diekmann O, Gyllenberg M, Metz J, Nakaoka S, de Roos A (2010) Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J Math Biol 61:277–318Google Scholar
  11. Durinx M, Metz JAJ, Meszéna G (2008) Adaptive dynamics for physiologically structured models. J Math Biol 56:673–742MathSciNetMATHCrossRefGoogle Scholar
  12. Evans L (1998) Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical SocietyGoogle Scholar
  13. Ferriére R, Tran VC (2009) Stochastic and deterministic models for age-structured populations with genetically variable traits. ESAIM: Proceedings 27. pp. 289–310, Proceedings of the CANUM 2008 conferenceGoogle Scholar
  14. Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab 14(4):1880–1919MathSciNetMATHCrossRefGoogle Scholar
  15. Gurney WSC, Nisbet RM (1985) Fluctuation periodicity, generation separation, and the expression of larval competition. Theor Pop Biol 28:150–180MathSciNetMATHCrossRefGoogle Scholar
  16. Jacod J, Shiryaev A (1987) Limit Theorems for Stochastic Processes. Springer, BerlinMATHCrossRefGoogle Scholar
  17. Jagers P, Klebaner F (2000) Population-size-dependent and age-dependent branching processes. Stoch Proc Appl 87:235–254MathSciNetMATHCrossRefGoogle Scholar
  18. Jagers P, Klebaner F (2011) Population-size-dependent, age-structured branching processes linger around their carrying capacity. J Appl Prob 48A: 249–260, special volume: New Frontiers in Applied ProbabilityGoogle Scholar
  19. Joffe A, Métivier M (1986) Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv Appl Prob 18:20–65MATHCrossRefGoogle Scholar
  20. Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J Appl Prob 7:49–58Google Scholar
  21. Kurtz TG (1981) Approximation of population Processes. SIAM, Philadelphia, PACrossRefGoogle Scholar
  22. Méléard S, Metz JAJ, Tran VC (2011) Limiting Feller diffusions for logistic populations with age-structure, 58th World Statistics Congress of the International Statistical Institute (ISI 2011), Dublin Ireland (July 2011). hal-00595928Google Scholar
  23. Méléard S, Roelly S (1993) Sur les convergences étroite ou vague de processus à valeurs mesures. CRAcadSciParis, Serie I 317:785–788Google Scholar
  24. Méléard S, Tran VC (2009) Trait substitution sequence process and canonical equation for age-structured populations. J Math Biol 58(6):881–921MathSciNetMATHCrossRefGoogle Scholar
  25. Méléard S, Tran VC (2012) Slow and fast scales for superprocess limits of age-structured populations. Stoch Proc Appl 122:250–276MATHCrossRefGoogle Scholar
  26. Metz JAJ, Diekmann O (1986) The dynamics of physiologically structured populations. Lecture Notes in Biomathematics, vol. 68. Springer, BerlinGoogle Scholar
  27. Metz JAJ, de Roos AM (1992) The role of physiologically structured population models within a general individual-based modeling perspective. In: DeAngelis DL, Gross LJ (eds) Individual-based models and approaches in ecology. Routledge, Chapman& Hall, London, pp 88–111Google Scholar
  28. Nisbet RM, Gurney WSC (1983) The systematic formulation of populationmodels with dynamically varying instar duration. Theor Pop Biol 23:114–135MathSciNetMATHCrossRefGoogle Scholar
  29. Oelschläger K (1990) Limit theorem for age-structured populations. Ann Prob 18(1):290–318MATHCrossRefGoogle Scholar
  30. de Roos A, Metz JAJ, Evers E, Leipoldt A (1990) A size dependent predator-prey interaction: who pursues whom? J Math Biol 28(6):609–643MathSciNetMATHCrossRefGoogle Scholar
  31. Tran VC (2006) Modéles particulaires stochastiques pour des problémes d’évolution adaptative et pour l’approximation de solutions statistiques. PhD thesis, Université Paris X—Nanterre.
  32. Tran VC (2008) Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM: P&S 12:345–386MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Mathematical Institute and Institute of Biology and NCB Naturalis, LeidenLeidenThe Netherlands
  2. 2.EEPIIASALaxenburgAustria
  3. 3.Université des Sciences et Technologies Lille 1, Laboratoire Paul Painlevé, UFR de Mathématiques, UMR CNRS 8524Villeneuve d’Ascq CédexFrance
  4. 4.CMAP, Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations