Journal of Mathematical Biology

, Volume 67, Issue 6–7, pp 1795–1832 | Cite as

On the identifiability of metabolic network models

  • Sara Berthoumieux
  • Matteo Brilli
  • Daniel Kahn
  • Hidde de Jong
  • Eugenio CinquemaniEmail author


A major problem for the identification of metabolic network models is parameter identifiability, that is, the possibility to unambiguously infer the parameter values from the data. Identifiability problems may be due to the structure of the model, in particular implicit dependencies between the parameters, or to limitations in the quantity and quality of the available data. We address the detection and resolution of identifiability problems for a class of pseudo-linear models of metabolism, so-called linlog models. Linlog models have the advantage that parameter estimation reduces to linear or orthogonal regression, which facilitates the analysis of identifiability. We develop precise definitions of structural and practical identifiability, and clarify the fundamental relations between these concepts. In addition, we use singular value decomposition to detect identifiability problems and reduce the model to an identifiable approximation by a principal component analysis approach. The criterion is adapted to real data, which are frequently scarce, incomplete, and noisy. The test of the criterion on a model with simulated data shows that it is capable of correctly identifying the principal components of the data vector. The application to a state-of-the-art dataset on central carbon metabolism in Escherichia coli yields the surprising result that only \(4\) out of \(31\) reactions, and \(37\) out of \(100\) parameters, are identifiable. This underlines the practical importance of identifiability analysis and model reduction in the modeling of large-scale metabolic networks. Although our approach has been developed in the context of linlog models, it carries over to other pseudo-linear models, such as generalized mass-action (power-law) models. Moreover, it provides useful hints for the identifiability analysis of more general classes of nonlinear models of metabolism.


Systems biology Metabolic network modeling Parameter estimation Structural and practical identifiability  Principal component analysis  Singular value decomposition  Escherichia coli carbon metabolism 

Mathematics Subject Classification (2000)

92 Biology and other natural sciences 93 System theory Control 


  1. Ashyraliyev M, Nanfack YF, Kaandorp J, Blom J (2009) Systems biology: parameter estimation for biochemical models. FEBS J 276(4):886–902CrossRefGoogle Scholar
  2. Bellu G, Saccomani M, Audoly S, D’Angiò L (2007) DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput Methods Programs Biomed 88(1):52–61CrossRefGoogle Scholar
  3. Bennett B, Kimball E, Gao M, Osterhout R, Dien SV, Rabinowitz J (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5(8):593–599CrossRefGoogle Scholar
  4. Berthoumieux S, Brilli M, de Jong H, Kahn D, Cinquemani E (2011) Identification of linlog models of metabolic networks from incomplete high-throughput datasets. Bioinformatics 27(13):i186–i195CrossRefGoogle Scholar
  5. Berthoumieux S, Kahn D, de Jong H, Cinquemani E (2012) Structural and practical identifiability of approximate metabolic network models. In: Proceedings of the 16th IFAC symposium on system identification (SYSID 2012), vol 16, Brussels, Belgium, pp 1719–1724Google Scholar
  6. Bettenbrock K, Fischer S, Kremling A, Jahreis K, Sauter T, Gilles E (2006) A quantitative approach to catabolite repression in Escherichia coli. J Biol Chem 281(5):2578–2584CrossRefGoogle Scholar
  7. Brand M (2002) Incremental singular value decomposition of uncertain data with missing values. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Proceedings of the 7th European conference on computer vision (ECCV 2002), Lecture Notes in Computer Science, vol 2350, Springer, pp 707–720Google Scholar
  8. Chappell M, Godfrey K, Vajda S (1990) Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. Math Biosci 102(1):41–73CrossRefzbMATHGoogle Scholar
  9. Chen W, Nieper M, Sorger P (2010) Classic and contemporary approaches to modeling biochemical reactions. Genes Dev 24(17):1861–75CrossRefGoogle Scholar
  10. Chis O, Banga J, Balsa-Canto E (2011a) GenSSI: a software toolbox for structural identifiability analysis of biological models. Bioinformatics 27(18):2610–1Google Scholar
  11. Chis O, Banga J, Balsa-Canto E (2011b) Structural identifiability of systems biology models: a critical comparison of methods. PLoS One 6(11):e27,755Google Scholar
  12. Chou IC, Voit E (2009) Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 219(2):57–83MathSciNetCrossRefzbMATHGoogle Scholar
  13. Cobelli C, DiStefano J (1980) Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am J Physiol 239(1):R7–24Google Scholar
  14. Crampin E (2006) System identification challenges from systems biology. In: Proceedings of the 14th IFAC symposium on system identification (SYSID 2006), Newcastle, pp 81–93Google Scholar
  15. Delgado X, Liao J (1992) Metabolic control analysis using transient metabolite concentrations. Biochem J 285:965–72Google Scholar
  16. Gutenkunst R, Waterfall J, Casey F, Brown K, Myers C, Sethna J (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3(10):e189MathSciNetCrossRefGoogle Scholar
  17. Hardiman T, Lemuth K, Reuss MKM, Siemann-Herzberg M (2007) Topology of the global regulatory network of carbon limitation in Escherichia coli. J Biotechnol 132(4):359–374CrossRefGoogle Scholar
  18. Hatzimanikatis V, Bailey J (1997) Effects of spatiotemporal variations on metabolic control: approximate analysis using (log)linear kinetic models. Biotechnol Bioeng 54(2):91–104CrossRefGoogle Scholar
  19. Heijnen J (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 91(5):534–45CrossRefGoogle Scholar
  20. Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman& Hall, New YorkCrossRefzbMATHGoogle Scholar
  21. van Huffel S, Vandewalle J (1991) The total least squares problems: computational aspects and analysis. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  22. Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho P, Kakazu Y, Sugawara K, Igarashi S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316(5824):593–597CrossRefGoogle Scholar
  23. Jaqaman K, Danuser G (2006) Linking data to models: data regression. Nat Rev Mol Cell Biol 7(11):813–9CrossRefGoogle Scholar
  24. Jolliffe I (1986) Principal component analysis. Springer, BerlinCrossRefGoogle Scholar
  25. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103CrossRefGoogle Scholar
  26. Kotte O, Zaugg J, Heinemann M (2010) Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Syst Biol 6:355CrossRefGoogle Scholar
  27. Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3:41CrossRefGoogle Scholar
  28. Ljung L (1999) System identification, theory for the user. Prentice Hall, Englewood CliffsGoogle Scholar
  29. Maiwald T, Timmer J (2008) Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics 24(18):2037–2043CrossRefGoogle Scholar
  30. Nemcova J (2010) Structural identifiability of polynomial and rational systems. Math Biosci 223(2):83–96MathSciNetCrossRefzbMATHGoogle Scholar
  31. Nikerel I, van Winden W, Verheijen P, Heijnen J (2009) Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics. Metab Eng 11(1):20–30CrossRefGoogle Scholar
  32. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15):1923–29CrossRefGoogle Scholar
  33. Raue A, Kreutz C, Maiwald T, Klingmüller U, Timmer J (2011) Addressing parameter identifiability by model-based experimentation. IET Syst Biol 5(2):120–30CrossRefGoogle Scholar
  34. Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135(2):175–201MathSciNetCrossRefGoogle Scholar
  35. Sands P, Voit E (1996) Flux-based estimation of parameters in S-systems. Ecol Model 93(1–3):75–88CrossRefGoogle Scholar
  36. Savageau M (1976) Biochemical systems analysis: a study of function and design in molecular biology. Addison-Wesley, ReadingzbMATHGoogle Scholar
  37. Srinath S, Gunawan R (2010) Parameter identifiability of power-law biochemical system models. J Biotechnol 149(3):132–140CrossRefGoogle Scholar
  38. Visser D, Heijnen J (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5(3):164–76CrossRefGoogle Scholar
  39. Voit E, Almeida J, Marino S, Lall R, Goel G, Neves A, Santos H (2006a) Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. IET Syst Biol 153(4):286–298CrossRefGoogle Scholar
  40. Voit E, Neves A, Santos H (2006b) The intricate side of systems biology. Proc Natl Acad Sci USA 103(25):9452–7CrossRefGoogle Scholar
  41. Walter E, Pronzato L (1997) Identification of parametric models. Springer, New YorkzbMATHGoogle Scholar
  42. Xia X, Moog C (2003) Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE Trans Autom Control 2:330–336MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sara Berthoumieux
    • 1
  • Matteo Brilli
    • 2
  • Daniel Kahn
    • 2
  • Hidde de Jong
    • 1
  • Eugenio Cinquemani
    • 1
    Email author
  1. 1.INRIA Grenoble-Rhône-AlpesMontbonnotFrance
  2. 2.Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558Université Lyon 1, INRAVilleurbanneFrance

Personalised recommendations