Journal of Mathematical Biology

, Volume 67, Issue 3, pp 569–607

A rigorous model study of the adaptive dynamics of Mendelian diploids

  • Pierre Collet
  • Sylvie Méléard
  • Johan A. J. Metz
Open Access


Adaptive dynamics (AD) so far has been put on a rigorous footing only for clonal inheritance. We extend this to sexually reproducing diploids, although admittedly still under the restriction of an unstructured population with Lotka–Volterra-like dynamics and single locus genetics (as in Kimura’s in Proc Natl Acad Sci USA 54: 731–736, 1965 infinite allele model). We prove under the usual smoothness assumptions, starting from a stochastic birth and death process model, that, when advantageous mutations are rare and mutational steps are not too large, the population behaves on the mutational time scale (the ‘long’ time scale of the literature on the genetical foundations of ESS theory) as a jump process moving between homozygous states (the trait substitution sequence of the adaptive dynamics literature). Essential technical ingredients are a rigorous estimate for the probability of invasion in a dynamic diploid population, a rigorous, geometric singular perturbation theory based, invasion implies substitution theorem, and the use of the Skorohod M1 topology to arrive at a functional convergence result. In the small mutational steps limit this process in turn gives rise to a differential equation in allele or in phenotype space of a type referred to in the adaptive dynamics literature as ‘canonical equation’.


Individual-based mutation-selection model Invasion fitness for diploid populations Adaptive dynamics Canonical equation Polymorphic evolution sequence Competitive Lotka–Volterra system 

Mathematics Subject Classification (2000)

92D25 60J80 37N25 92D15 60J75 


  1. Athreya KB, Ney PE (1972) Branching processes. Springer, BerlinCrossRefMATHGoogle Scholar
  2. Barles G, Perthame B (2007) Concentrations and constrained Hamilton–Jacobi equations arising in adaptive dynamics. In: Danielli D (ed) Recent developments in nonlinear partial differential equations. CONM, vol 439, pp 57–68. AMS, ProvidenceGoogle Scholar
  3. Bovier A, Champagnat N (2012) Time scales in adaptive dynamics: directional selection, fast and slow branching (in prep)Google Scholar
  4. Carrillo JA, Cuadrado S, Perthame B (2007) Adaptive dynamics via Hamilton–Jacobi approach and entropy methods for a juvenile-adult model. Math Biosci 205(1): 137–161MathSciNetCrossRefMATHGoogle Scholar
  5. Champagnat N, Ferrière R, Méléard S (2008) From individual stochastic processes to macroscopic models in adaptive evolution. Stoch Models 24(Suppl 1): 2–44MathSciNetCrossRefMATHGoogle Scholar
  6. Champagnat N (2006) A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch Process Appl 116(8): 1127–1160MathSciNetCrossRefMATHGoogle Scholar
  7. Champagnat N, Méléard S (2011) Polymorphic evolution sequence and evolutionary branching. Probab Theory Relat Fields 151(2011): 45–94CrossRefMATHGoogle Scholar
  8. Chesson P (1990) MacArthur’s consumer-resource model. Theor Popul Biol 37: 26–38MathSciNetCrossRefMATHGoogle Scholar
  9. Christiansen FB, Fenchel TM (1977) Theories of populations in biological communities. Springer, BerlinCrossRefMATHGoogle Scholar
  10. Christiansen FB, Loeschcke V (1980) Evolution and intraspecific competition. I. One-locus theory for small additive gene effects. Theor Popul Biol 18: 297–313MathSciNetCrossRefMATHGoogle Scholar
  11. Christiansen FB, Loeschcke V (1987) Evolution and intraspecific competition. III. One-locus theory for small additive gene effects and multidimensional resource qualities. Theor Popul Biol 31: 33–46MathSciNetCrossRefMATHGoogle Scholar
  12. Claessen D, Andersson J, Persson L, de Roos AM (2007) Delayed evolutionary branching in small populations. Evol Ecol Res 9: 51–69Google Scholar
  13. Claessen D, Andersson J, Persson L, de Roos AM (2008) The effect of population size and recombination on delayed evolution of polymorphism and speciation in sexual populations. Am Nat 172: E18–E34CrossRefGoogle Scholar
  14. Dercole F, Rinaldi S (2008) Analysis of evolutionary processes: the adaptive dynamics approach and its applications. Princeton UP, NJGoogle Scholar
  15. Desvillettes L, Jabin PE, Mischler S, Raoul G (2008) On selection dynamics for continuous structured populations. Commun Math Sci 6(3): 729–747MathSciNetMATHGoogle Scholar
  16. Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34: 579–612MathSciNetCrossRefMATHGoogle Scholar
  17. Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400: 54–357CrossRefGoogle Scholar
  18. Diekmann O, Gyllenberg M, Metz JAJ, Thieme HR (1998) On the formulation and analysis of general deterministic structured population models. I. Linear theory. J Math Biol 36: 349–388MathSciNetCrossRefMATHGoogle Scholar
  19. Diekmann O, Gyllenberg M, Huang H, Kirkilionis M, Metz JAJ, Thieme HR (2001) On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J Math Biol 43: 157–189MathSciNetCrossRefMATHGoogle Scholar
  20. Diekmann O, Gyllenberg M, Metz JAJ (2003) Steady state analysis of structured population models. Theor Popul Biol 63: 309–338CrossRefMATHGoogle Scholar
  21. Diekmann O, Jabin PE, Mischler S, Perthame B (2005) The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach. Theor Pop Biol 67: 257–271CrossRefMATHGoogle Scholar
  22. Diekmann O, Gyllenberg M, Metz J, Nakaoka S, de Roos A (2010) Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J Math Biol 61: 277–318MathSciNetCrossRefMATHGoogle Scholar
  23. Diekmann O, Metz JAJ (2010) How to lift a model for individual behaviour to the population level?. Phil Trans R Soc Lond B 365: 3523–3530CrossRefGoogle Scholar
  24. Dieudonné J (1996) Foundations of modern analysis. Academic Press, New YorkGoogle Scholar
  25. Doebeli M (2011) Adaptive diversification. Princeton UP, NJGoogle Scholar
  26. Doebeli M, Dieckmann U (2000) Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am Nat 156: S77–S101CrossRefGoogle Scholar
  27. Donnelly P, Weber N (1985) The Wright–Fisher model with temporally varying selection and population size. J Math Biol 22: 21–29MathSciNetCrossRefMATHGoogle Scholar
  28. Durinx M, Metz JAJ, Meszéna G (2008) Adaptive dynamics for physiologically structured models. J Math Biol 56: 673–742MathSciNetCrossRefMATHGoogle Scholar
  29. Eshel I (1983) Evolutionary and continuous stability. J Theor Biol 103: 99–111MathSciNetCrossRefGoogle Scholar
  30. Eshel I (2012) Short-term and long-term evolution. In: Dieckmann U, Metz JAJ (eds) Elements of adaptive dynamics. Cambridge studies in adaptive dynamics. Cambridge UP, London (in press)Google Scholar
  31. Eshel I, Feldman MW (2001) Optimization and evolutionary stability under short-term and long-term selection. In: Sober E, Orzack S (eds) Adaptationism and optimality. Cambridge UP, NJ, pp 161–190CrossRefGoogle Scholar
  32. Eshel I, Feldman MW, Bergman A (1998) Long-term evolution, short-term evolution, and population genetic theory. J Theor Biol 191: 391–396CrossRefGoogle Scholar
  33. Ethier SN, Kurtz TG (1986) Markov Processes, characterization and convergence. Wiley, New YorkCrossRefMATHGoogle Scholar
  34. Ferrière R, Tran VC (2009) Stochastic and deterministic models for age-structured populations with genetically variable traits. In: Besse C, Goubet O, Goudon T, Nicaise S (eds) Proceedings of the CANUM 2008 conference. ESAIM proceedings, vol 27, pp 289–310Google Scholar
  35. Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab 14: 1880–1919MathSciNetCrossRefMATHGoogle Scholar
  36. Freidlin MI, Wentzel AD (1984) Random perturbations of dynamical systems. Springer, BerlinCrossRefMATHGoogle Scholar
  37. Geritz SAH, Gyllenberg M, Jacobs FJA, Parvinen K (2002) Invasion dynamics and attractor inheritance. J Math Biol 44: 548–560MathSciNetCrossRefMATHGoogle Scholar
  38. Geritz SAH, Meszéna G, Meszéna G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12: 35–57CrossRefGoogle Scholar
  39. Golubitsky M, Guillemin V (1973) Stable mappings and their singularities. Springer, New YorkCrossRefMATHGoogle Scholar
  40. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcation of vector fields. Springer, New YorkGoogle Scholar
  41. Gyllenberg M, Meszéna G (2005) On the impossibility of coexistence of infinitely many strategies. J Math Biol 50: 133–160MathSciNetCrossRefMATHGoogle Scholar
  42. Heyde CC (1977) The effect of selection on genetic balance when the population size is varying. Theor Popul Biol 11: 249–251MathSciNetCrossRefMATHGoogle Scholar
  43. Heyde CC (1983) An alternative approach to asymptotic results on genetic composition when the population size is varying. J Math Biol 18: 163–168CrossRefMATHGoogle Scholar
  44. Heyde CC, Seneta E (1975) The genetic balance between random sampling and random population size. J Math Biol 1: 317–320MathSciNetCrossRefMATHGoogle Scholar
  45. Hirsh M, Pugh C, Shub M (1977) Invariant manifolds. In: Lecture notes in mathematics, vol 583. Springer, BerlinGoogle Scholar
  46. Hofbauer J, Sigmund K (1987) Dynamical systems and the theory of evolution. Cambridge UP, NJGoogle Scholar
  47. Karlin S (1968) Rates of approach to homozygosity for finite stochastic models with variable population size. Am Nat 102: 443–455CrossRefGoogle Scholar
  48. Kimura M (1965) A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc Natl Acad Sci USA 54: 731–736CrossRefMATHGoogle Scholar
  49. Geritz SAH, Geritz SAH (1999) Dynamics in allele space: evolution of genetic polymorphism by small mutations in a heterogeneous environment. Evolution 53: 993–1008CrossRefGoogle Scholar
  50. Klebaner FC (1988) Conditions for fixation of an allele in the density-dependent Wright–Fisher models. J Appl Prob 25: 247–256MathSciNetCrossRefMATHGoogle Scholar
  51. Klebaner FC, Sagitov S, Vatutin VA, Haccou P, Jagers P (2011) Stochasticity in the adaptive dynamics of evolution: the bare bones. J Biol Dyn 5: 147–162MathSciNetCrossRefGoogle Scholar
  52. Levins R (1968) Toward an evolutionary theory of the niche. In: Drake ET (ed) Evolution and environment. Yale Univ Press, New Haven, pp 325–340Google Scholar
  53. Leimar O, Doebeli M, Dieckmann U (2008) Evolution of phenotypic clusters through competition and local adaptation along an environmental gradient. Evolution 62: 807–822CrossRefGoogle Scholar
  54. Loeschcke V, Christiansen FB (1984) Intraspecific exploitative competition. II. A two-locus model for additive gene effects. Theor Popul Biol 26: 228–264MathSciNetCrossRefMATHGoogle Scholar
  55. Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore [reprinted as Elements of Mathematical Biology. Dover (1956)]Google Scholar
  56. MacArthur RH, Levins R (1964) Competition, habitat selection, and character displacement in a patchy environment. Proc Natl Acad Sci USA 51: 1207–1210CrossRefGoogle Scholar
  57. MacArthur RH, Levins R (1967) The limiting similarity, convergence and divergence of coexisting species. Am Nat 101: 377–385CrossRefGoogle Scholar
  58. MacArthur RH (1970) Species packing and competitive equilibrium for many species. Theor Popul Biol 1: 1–11CrossRefGoogle Scholar
  59. MacArthur RH (1972) Geogr Ecol. Harper & Row, New YorkGoogle Scholar
  60. Marrow P, Law R, Cannings C (1992) The coevolution of predator–prey interactions: ESSs and Red Queen dynamics. Proc R Soc Lond B 250: 133–141CrossRefGoogle Scholar
  61. May RM (1973) Stability and complexity in model ecosystems. Princeton UP, NJGoogle Scholar
  62. May RM (1974) On the theory of niche overlap. Theor Popul Biol 5: 297–332CrossRefGoogle Scholar
  63. Méléard S, Tran VC (2009) Trait substitution sequence process and canonical equation for age-structured populations. J Math Biol 58: 881–921MathSciNetCrossRefMATHGoogle Scholar
  64. Meszéna G, Gyllenberg M, Pásztor L, Metz JAJ (2006) Competitive exclusion and limiting similarity: a unified theory. Theor Popul Biol 69: 68–87CrossRefMATHGoogle Scholar
  65. Metz JAJ (2012) Invasion fitness, canonical equations, and global invasion criteria for Mendelian populations. In: Dieckmann U, Metz JAJ (eds) Elements of adaptive dynamics. Cambridge UP, London (in press)Google Scholar
  66. Metz JAJ, de Kovel CGF (2012) The canonical equation for adaptive dynamics for Mendelian diploids and haplo-diploids (in prep)Google Scholar
  67. Metz JAJ, Nisbet RM, Geritz SAH (1992) How should we define fitness for general ecological scenarios. Trends Ecol Evol 7: 198–202CrossRefGoogle Scholar
  68. Metz JAJ, Geritz SAH, Meszéna G, Jacobs FAJ, van Heerwaarden JS (1996) Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: van Strien SJ, Verduyn Lunel SM (eds) Stochastic and spatial structures of dynamical systems. North Holland, Amsterdam, pp 183–231Google Scholar
  69. Metz JAJ, Redig F (2012) A birth and death process approach to selection in diploid populations (in prep)Google Scholar
  70. Metz JAJ, Tran VC (2012) Daphnias: from the individual based model to the large population equation. J Math Biol (submitted)Google Scholar
  71. Peischl S, Bürger R (2008) Evolution of dominance under frequency-dependent intraspecific competition. J Theor Biol 251: 210–226CrossRefGoogle Scholar
  72. Proulx SR, Phillips PC (2006) Allelic divergence precedes and promotes gene duplication. Evolution 60: 881–892Google Scholar
  73. Roughgarden J (1971) Density dependent natural selection. Ecology 52: 453–468CrossRefGoogle Scholar
  74. Roughgarden J (1976) Resource partitioning among competing species—a coevolutionary approach. Theor Popul Biol 9: 388–424MathSciNetCrossRefMATHGoogle Scholar
  75. Roughgarden J (1979) Theory of population genetics and evolutionary ecology: an introduction. MacMillan, New YorkGoogle Scholar
  76. Roughgarden J (1989) The structure and assembly of communities. In: Roughgarden J, May RM, Levin SA (eds) Perspectives in ecological theory. Princeton UP, NJ, pp 203–226Google Scholar
  77. Seneta (1974) A note on the balance between random sampling and population size. Genetics 77: 607–610Google Scholar
  78. Skorohod AV (1956) Limit theorems for stochastic processes. Theory Probab Appl 1(3): 261–290MathSciNetCrossRefGoogle Scholar
  79. Slatkin M (1980) Ecological character displacement. Ecology 61: 163–177CrossRefGoogle Scholar
  80. Tran VC (2006) Modèles particulaires stochastiques pour des problèmes d’évolution adaptative et pour l’approximation de solutions statistiques. Dissertation, Université Paris X–Nanterre, 12.
  81. Tran VC (2008) Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM Probab Stat 12: 345–386MathSciNetCrossRefMATHGoogle Scholar
  82. Van Dooren TJM (1999) The evolutionary ecology of dominance–recessivity. J Theor Biol 198: 519–532CrossRefGoogle Scholar
  83. Van Dooren TJM (2000) The evolutionary dynamics of direct phenotypic overdominance: emergence possible, loss probable. Evolution 54: 1899–1914CrossRefGoogle Scholar
  84. Van Doorn S, Dieckmann U (2006) The long-term evolution of multi-locus traits under frequency-dependent disruptive selection. Evolution 60: 2226–2238CrossRefGoogle Scholar
  85. Volterra V (1931) Leçons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, ParisGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Pierre Collet
    • 1
  • Sylvie Méléard
    • 2
  • Johan A. J. Metz
    • 3
    • 4
    • 5
  1. 1.CPHT Ecole Polytechnique, CNRS UMR 7644Palaiseau CedexFrance
  2. 2.CMAP, Ecole Polytechnique, CNRSPalaiseau CedexFrance
  3. 3.Department of Mathematics, Institute of BiologyLeiden UniversityLeidenThe Netherlands
  4. 4.Marine ZoologyNCB NaturalisLeidenThe Netherlands
  5. 5.Ecology and Evolution ProgramInstitute of Applied Systems AnalysisLaxenburgAustria

Personalised recommendations