Journal of Mathematical Biology

, Volume 67, Issue 2, pp 411–432 | Cite as

Outbreak analysis of an SIS epidemic model with rewiring



This paper is devoted to the analysis of the early dynamics of an SIS epidemic model defined on networks. The model, introduced by Gross et al. (Phys Rev Lett 96:208701, 2006), is based on the pair-approximation formalism and assumes that, at a given rewiring rate, susceptible nodes replace an infected neighbour by a new susceptible neighbour randomly selected among the pool of susceptible nodes in the population. The analysis uses a triple closure that improves the widely assumed in epidemic models defined on regular and homogeneous networks, and applies it to better understand the early epidemic spread on Poisson, exponential, and scale-free networks. Two extinction scenarios, one dominated by transmission and the other one by rewiring, are characterized by considering the limit system of the model equations close to the beginning of the epidemic. Moreover, an analytical condition for the occurrence of a bistability region is obtained.


Pair approximation Network epidemic models Rewiring Basic reproduction number 

Mathematics Subject Classification

92D30 (epidemiology) 05C82 (small world graphs, complex networks) 34C60 (qualitative investigation and simulation of models) 90B15 (network models, stochastic) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and networks models in epidemiology. J R Soc Interface 4: 879–891CrossRefGoogle Scholar
  2. Bauch CT (2005) The spread of infectious diseases in spatially structured populations: An invasory pair approximation. Math Biosci 198: 217–237MathSciNetMATHCrossRefGoogle Scholar
  3. Boguñá M, Pastor-Satorras R, Vespignani A (2004) Cut-offs and finite size effects in scale-free networks. Eur Phys J B 38: 205–209CrossRefGoogle Scholar
  4. Böhme GA, Gross T (2011) Analytical calculation of fragmentation transitions in adaptive networks. Phys Rev E 83: 035101(R)CrossRefGoogle Scholar
  5. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, New YorkGoogle Scholar
  6. Eames KTD, Keeling MJ (2002) Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc Natl Acad Sci USA 99: 13330–13335CrossRefGoogle Scholar
  7. Ferguson N (2007) Capturing human behaviour. Nature 446: 733CrossRefGoogle Scholar
  8. Funk S, Salath M, Jansen VAA (2010) Modelling the influence of human behaviour on the spread of infection diseases: a review. J R Soc Interface 7: 1247–1256CrossRefGoogle Scholar
  9. Garcia-Domingo JL, Saldaña J (2011) Extinction threshold for spatial forest dynamics with height structure. J Theor Biol 276: 138–149CrossRefGoogle Scholar
  10. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58: 35–55CrossRefGoogle Scholar
  11. Gross T (2009) Interplay of network state and topology in epidemic dynamics. In: Boccaletti S, Latora V, Moreno Y (eds) Handbook of biological networks. World Scientific, Singapore, pp 417–436CrossRefGoogle Scholar
  12. Gross T, D’Lima CJD, Blasius B (2006) Epidemic dynamics on an adaptive network. Phys Rev Lett 96: 208701CrossRefGoogle Scholar
  13. House T, Keeling MJ (2011) Insights from unifying modern approximations to infections on networks. J R Soc Interface 8: 67–73CrossRefGoogle Scholar
  14. Keeling M (1999) The effects of local spatial structure on epidemiological invasions. Proc R Soc Lond B 266: 859–867CrossRefGoogle Scholar
  15. Keeling MJ, Rand DA, Morris AJ (1997) Correlation models for childhood epidemics. Proc R Soc Lond B 264: 1149–1156CrossRefGoogle Scholar
  16. Kimura D, Hayakawa Y (2008) Coevolutionary networks with homophily and heterophily. Phys Rev E 78: 016103CrossRefGoogle Scholar
  17. Lindquist J, Ma J, van den Driessche P, Willeboordse FH (2011) Effective degree network disease models. J Math Biol 62: 143–164MathSciNetMATHCrossRefGoogle Scholar
  18. Marceau V, Noël PA, Hébert-Dufresne L, Allard A, Dubé LJ (2010) Adaptive networks: coevolution of disease and topology. Phys Rev E 82: 036116MathSciNetCrossRefGoogle Scholar
  19. Miller JC (2009) Spread of infectious disease through clustered populations. J R Soc Interface 6: 1121–1134CrossRefGoogle Scholar
  20. Perko L (1993) Differential equations and dynamical systems, 1st edn. Springer, New YorkGoogle Scholar
  21. Rand DA (1999) Correlation equations and pair approximation for spatial ecologies. In: McGlade J (eds) Advanced ecological theory. Blackwell Science, New York, pp 100–142CrossRefGoogle Scholar
  22. Risau-Gusman S, Zanette DH (2009) Contact switching as a control strategy for epidemic outbreaks. J Theor Biol 257: 52–60MathSciNetCrossRefGoogle Scholar
  23. Schwartz IB, Shaw LB (2010) Rewiring for adaptation. Physics 3: 17CrossRefGoogle Scholar
  24. Schwarzkopf Y, Rákos A, Mukamel D (2010) Epidemic spreading in evolving networks. Phys Rev E 82: 036112MathSciNetCrossRefGoogle Scholar
  25. Segel LA, Slemrod M (1989) The quasi-steady-state assumption: a case study in perturbation. SIAM Rev 31: 446–477MathSciNetMATHCrossRefGoogle Scholar
  26. Serrano MÁ, Boguñá M (2006) Percolation and epidemic thresholds in clustered networks. Phys Rev Lett 97: 088701CrossRefGoogle Scholar
  27. Sharkey K (2008) Deterministic epidemiological models at the individual level. J Math Biol 57: 311–331MathSciNetMATHCrossRefGoogle Scholar
  28. Shaw LB, Schwartz IB (2008) Fluctuating epidemics on adaptive networks. Phys Rev E 77: 066101MathSciNetCrossRefGoogle Scholar
  29. Svensson A (2007) A note on generation times in epidemic models. Math Biosci 208: 300–311MathSciNetMATHCrossRefGoogle Scholar
  30. Taylor M, Simon PL, Green DM, House T, Kiss IZ (2012) From Markovian to pairwise epidemic models and the performance of moment closure approximations. J Math Biol 64: 1021–1042MathSciNetMATHCrossRefGoogle Scholar
  31. Trapman P (2007) Reproduction numbers for epidemics on networks using pair approximation. Math Biosci 210: 464–489MathSciNetMATHCrossRefGoogle Scholar
  32. Vazquez F, Eguíluz VM, San Miguel M (2008) Generic absorbing transition in coevolution dynamics. Phys Rev Lett 100: 108702CrossRefGoogle Scholar
  33. Volz E (2008) SIR dynamics in random networks with heterogeneous connectivity. J Math Biol 56: 293–310MathSciNetMATHCrossRefGoogle Scholar
  34. Volz E, Frost SD, Rothenberg R, Meyers LA (2010) Epidemiological bridging by injection drug use drives an early HIV epidemic. Epidemics 2: 155–164CrossRefGoogle Scholar
  35. Volz E, Meyers LA (2007) Susceptible-infected-recovered epidemics in dynamic contact networks. Proc R Soc B 274: 2925–2933CrossRefGoogle Scholar
  36. Volz E, Meyers LA (2009) Epidemic thresholds in dynamic contact networks. J R Soc Interface 6: 233–241CrossRefGoogle Scholar
  37. Volz E, Miller JC, Galvani A, Meyers LA (2011) Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Comp Biol 7: e1002042MathSciNetCrossRefGoogle Scholar
  38. Wieland S, Aquino T, Nunes A (2012) The structure of coevolving infection networks. Europhys Lett 97: 18003CrossRefGoogle Scholar
  39. Zanette DH, Risau-Gusmán S (2008) Infection spreading in a population with evolving contacts. J Biol Phys 34: 135–148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Departament d’Informàtica i Matemàtica AplicadaUniversitat de GironaGironaSpain

Personalised recommendations