Advertisement

Journal of Mathematical Biology

, Volume 65, Issue 6–7, pp 1215–1244 | Cite as

Turing instabilities in a mathematical model for signaling networks

  • Andreas Rätz
  • Matthias RögerEmail author
Article

Abstract

GTPase molecules are important regulators in cells that continuously run through an activation/deactivation and membrane-attachment/membrane-detachment cycle. Activated GTPase is able to localize in parts of the membranes and to induce cell polarity. As feedback loops contribute to the GTPase cycle and as the coupling between membrane-bound and cytoplasmic processes introduces different diffusion coefficients a Turing mechanism is a natural candidate for this symmetry breaking. We formulate a mathematical model that couples a reaction–diffusion system in the inner volume to a reaction–diffusion system on the membrane via a flux condition and an attachment/detachment law at the membrane. We present a reduction to a simpler non-local reaction–diffusion model and perform a stability analysis and numerical simulations for this reduction. Our model in principle does support Turing instabilities but only if the lateral diffusion of inactivated GTPase is much faster than the diffusion of activated GTPase.

Keywords

Turing instability Non-local reaction–diffusion system Signaling molecules 

Mathematics Subject Classification (2000)

92C37 35K57 35Q92 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschuler SJ, Angenent SB, Wang Y, Wu LF (2008) On the spontaneous emergence of cell polarity. Nature 454(7206): 886–889. doi: 10.1038/nature07119 CrossRefGoogle Scholar
  2. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5): 865–877. doi: 10.1016/j.cell.2007.05.018 CrossRefGoogle Scholar
  3. Brusch L, Del Conte-Zerial P, Kalaidzidis Y, Rink J, Habermann B, Zerial M, Deutsch A (2007) Protein domains of GTPases on membranes: do they rely on Turings mechanism?. In: Deutsch A, Brusch L, Byrne H, De Vries G, Herzel H (eds) Mathematical Modeling of Biological Systems vol I. Birkhäuser, BostonGoogle Scholar
  4. Butler T, Goldenfeld N (2011) Fluctuation-driven Turing patterns. Phys Rev E 84: 011112. doi: 10.1103/PhysRevE.84.011112 CrossRefGoogle Scholar
  5. Dierkes U, Hildebrandt S, Sauvigny F (2010) Minimal surfaces. Springer, (Grundlehren der mathematischen Wissenschaften Series pt. 1). ISBN:9783642116971Google Scholar
  6. Dziuk G, Elliott CM (2007) Finite elements on evolving surfaces. IMA J Numer Anal 27: S262–S292MathSciNetCrossRefGoogle Scholar
  7. Garmendia-Torres C, Goldbeter A, Jacquet M (2007) Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation. Curr Biol 17(12): 1044–1049. doi: 10.1016/j.cub.2007.05.032 CrossRefGoogle Scholar
  8. Goody RS, Rak A, Alexandrov K (2005) The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cell Mol Life Sci 62(15): 1657–1670. doi: 10.1007/s00018-005-4486-8 CrossRefGoogle Scholar
  9. Goryachev AB, Pokhilko AV (2008) Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett 582(10): 1437–1443. doi: 10.1016/j.febslet.2008.03.029 CrossRefGoogle Scholar
  10. Grosshans BL , Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103(32):11821–11827. doi: 10.1073/pnas.0601617103 CrossRefGoogle Scholar
  11. Guo Z, Ahmadian MR, Goody RS (2005) Guanine nucleotide exchange factors operate by a simple allosteric competitive mechanism. Biochemistry 44(47): 15423–15429. doi: 10.1021/bi0518601 CrossRefGoogle Scholar
  12. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Ann Rev Cell Dev Biol 21(1): 247–269. doi: 10.1146/annurev.cellbio.21.020604.150721 CrossRefGoogle Scholar
  13. Jilkine A (2003) Mathematical study of rho GTPases in motile cells. Dissertation, The University of British ColumbiaGoogle Scholar
  14. John K, Bär M (2005) Alternative mechanisms of structuring biomembranes: self-assembly versus self-organization. Phys Rev Lett 95(19): S198101CrossRefGoogle Scholar
  15. Jost J (2007) Graduate texts in mathematics. Bd. 214: Partial differential equations. Second edn. Springer, New York, xiv+356 S. (doi: 10.1007/978-0-387-49319-0) ISBN:978-0-387-49318-3; 0-387-49318-2
  16. Katanaev VL, Chornomorets M (2007) Kinetic diversity in G-protein-coupled receptor signalling. Biochem J 401(2): 485–495. doi: 10.1042/BJ20060517 CrossRefGoogle Scholar
  17. Keller Jürgen U (2009) An outlook on biothermodynamics. II. Adsorption of proteins. J NonEquilib Thermodyn 34(1): 1–33. (doi: 10.1515/JNETDY.2009.001) ISSN:0340–0204zbMATHCrossRefGoogle Scholar
  18. Koch AJ, Meinhardt H (1994) Biological pattern formation: from basic mechanisms to complex structures. Rev Mod Phys 66(4): S1481–S1507. doi: 10.1103/RevModPhys.66.1481 CrossRefGoogle Scholar
  19. Landsberg C, Voigt A (2010) A multigrid finite element method for reaction–diffusion systems on surfaces. Comp Vis Sci 13(4): S177–S185MathSciNetCrossRefGoogle Scholar
  20. Lipp R, Miaczynska M, Rybin V, Runge A, Zerial M (2001) Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol Biol Cell 12(7): S2219–S2228Google Scholar
  21. Lommerse Piet HM, Snaar-Jagalska BE, Spaink HP, Schmidt T (2005) Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J Cell Sci 118((Pt 9)): 1799–1809CrossRefGoogle Scholar
  22. Mori Y, Jilkine A, Edelstein-Keshet L (2008) Wave-pinning and cell polarity from a bistable reaction–diffusion system. Biophys J 94(9): 3684–3697. doi: 10.1242/jcs.02300 CrossRefGoogle Scholar
  23. Murray JD (1990) Discussion: Turing’s theory of morphogenesis–its influence on modelling biological pattern and form. Bull Math Biol 52(1–2): 119–152. (doi: 10.1016/S0092-8240(05)80007-2) ISSN:0092–8240CrossRefGoogle Scholar
  24. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley. ISBN:9780471024019Google Scholar
  25. Park HO, Bi E (2007) Central roles of small GTPases in the development of cell polarity in yeast and beyond. ETATS-UNIS, Washington, DC (Anglais)Google Scholar
  26. Pfeffer S (2003) Membrane domains in the secretory and endocytic pathways. Cell 112(4): S507–S517CrossRefGoogle Scholar
  27. Pfeffer S, Aivazian D (2004) Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 5(11): 886–896. doi: 10.1038/nrm1500 CrossRefGoogle Scholar
  28. Postma M, Bosgraaf L, Loovers HM, Haastert PJMV (2004) Chemotaxis: signalling modules join hands at front and tail. EMBO Rep 5(1): 35–40. doi: 10.1038/sj.embor.7400051 CrossRefGoogle Scholar
  29. Sönnichsen B, Renzis SD, Nielsen E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149(4): S901–S914CrossRefGoogle Scholar
  30. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81(1):153–208. (http://www.ncbi.nlm.nih.gov/pubmed/11152757)Google Scholar
  31. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72. (http://www.jstor.org/stable/92463) ISSN:00804622
  32. Vey S, Voigt A (2007) AMDiS—adaptive multidimensional simulations. Comput Vis Sci 10: S57–S67MathSciNetCrossRefGoogle Scholar
  33. Wedlich-Soldner R, Altschuler SWL, Li R (2003) Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299(5610): 1231–1235. doi: 10.1126/science.1080944 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Technische Universität DortmundDortmundGermany

Personalised recommendations