Advertisement

Journal of Mathematical Biology

, Volume 65, Issue 4, pp 743–785 | Cite as

Multiscale modelling of auxin transport in the plant-root elongation zone

  • L. R. BandEmail author
  • J. R. King
Open Access
Article

Abstract

In the root elongation zone of a plant, the hormone auxin moves in a polar manner due to active transport facilitated by spatially distributed influx and efflux carriers present on the cell membranes. To understand how the cell-scale active transport and passive diffusion combine to produce the effective tissue-scale flux, we apply asymptotic methods to a cell-based model of auxin transport to derive systematically a continuum description from the spatially discrete one. Using biologically relevant parameter values, we show how the carriers drive the dominant tissue-scale auxin flux and we predict how the overall auxin dynamics are affected by perturbations to these carriers, for example, in knockout mutants. The analysis shows how the dominant behaviour depends on the cells’ lengths, and enables us to assess the relative importance of the diffusive auxin flux through the cell wall. Other distinguished limits are also identified and their potential roles discussed. As well as providing insight into auxin transport, the study illustrates the use of multiscale (cell to tissue) methods in deriving simplified models that retain the essential biology and provide understanding of the underlying dynamics.

Keywords

Multiscale Asymptotic analysis Plant root Auxin Hormone transport Polar transport 

Mathematics Subject Classification (2000)

34E13 92C80 

Notes

Acknowledgments

This work was carried out at the Centre for Plant Integrative Biology (CPIB), and we are grateful to both the Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC) for supporting this project financially. In addition, JRK gratefully acknowledges the support of the Royal Society and Wolfson Foundation. We would like to thank our colleagues and collaborators at CPIB, in particular, Prof. Malcolm Bennett, Dr Eric Kramer, Dr Ranjan Swarup and Prof. Tobias Baskin.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59: 443–465CrossRefGoogle Scholar
  2. Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602CrossRefGoogle Scholar
  3. Berleth T, Scarpella E, Prusinkiewicz P (2007) Towards the systems biology of auxin-transport-mediated patterning. Trends Plant Sci 12: 151–159CrossRefGoogle Scholar
  4. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39–44CrossRefGoogle Scholar
  5. Casimiro I, Marchant A, Bhalerao R, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero P, Bennett MJ (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13: 843–852Google Scholar
  6. Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8(4): 165–171CrossRefGoogle Scholar
  7. Chavarría-Krauser A, Ptashnyk M (2009) Homogenization of long-range auxin transport in plant tissues. Nonlinear Anal Real. doi: 101016/jnonrwa200812003
  8. Chavarrıa-Krauser A, Jager W, Schurr U (2005) Primary root growth: a biophysical model of auxin-related control. Funct Plant Biol 32: 849–862CrossRefGoogle Scholar
  9. de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carraro N, Godin C, Traas J (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci USA 103: 1627–1632CrossRefGoogle Scholar
  10. De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D et al (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134: 681–690CrossRefGoogle Scholar
  11. Delbarre A, Muller P, Imhoff V, Morgat JL, Barbier-Brygoo H (1994) Uptake, accumulation and metabolism of auxins in tobacco leaf protoplasts. Planta 195: 159–167CrossRefGoogle Scholar
  12. Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2, 4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532–541CrossRefGoogle Scholar
  13. Feugier FG, Iwasa Y (2006) How canalization can make loops: a new model of reticulated leaf vascular pattern formation. J Theor Biol 243: 235–244MathSciNetCrossRefGoogle Scholar
  14. Feugier FG, Mochizuki A, Iwasa Y (2005) Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and carrier proteins. J Theor Biol 236: 366–375CrossRefGoogle Scholar
  15. Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6: 7–12CrossRefGoogle Scholar
  16. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806–809CrossRefGoogle Scholar
  17. Goel P, Sneyd J, Friedman A (2006) Homogenization of the cell cytoplasm: the calcium bidomain equations. Multiscale Model Simul 5: 1045–1062MathSciNetCrossRefzbMATHGoogle Scholar
  18. Goldsmith MHM, Goldsmith TH, Martin MH (1981) Mathematical analysis of the chemosmotic polar diffusion of auxin through plant tissues. Proc Natl Acad Sci USA 78: 976–980CrossRefGoogle Scholar
  19. Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449: 1008–1013CrossRefGoogle Scholar
  20. Heisler M, Jönsson H (2006) Modeling auxin transport and plant development. J Plant Growth Regul 25: 302–312CrossRefGoogle Scholar
  21. Jiang K, Feldman LJ (2005) Regulation of root apical meristem development. Annu Rev Cell Dev Biol 21: 485–509CrossRefGoogle Scholar
  22. Jönsson H, Krupinski P (2010) Modeling plant growth and pattern formation. Curr Opin Plant Biol 13: 5–11CrossRefGoogle Scholar
  23. Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103: 1633–1638CrossRefGoogle Scholar
  24. Keener J, Sneyd J (2004) Mathematical physiology. Springer, USAGoogle Scholar
  25. Kramer EM (2002) A mathematical model of pattern formation in the vascular cambium of trees. J Theor Biol 216: 147–158CrossRefGoogle Scholar
  26. Kramer EM (2004) PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci 9: 578–582CrossRefGoogle Scholar
  27. Kramer EM (2006) How far can a molecule of weak acid travel in the apoplast or xylem?. Plant Physiol 141: 1233–1236CrossRefGoogle Scholar
  28. Kramer EM (2008) Computer models of auxin transport: a review and commentary. J Exp Bot 59: 45–53CrossRefGoogle Scholar
  29. Kramer EM (2009) Auxin-regulated cell polarity: an inside job?. Trends Plant Sci 14: 242–247CrossRefGoogle Scholar
  30. Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11: 382–386CrossRefGoogle Scholar
  31. Kramer EM, Frazer NL, Baskin TI (2007) Measurement of diffusion within the cell wall in living roots of Arabidopsis thealiana. J Exp Bot 58: 3005–3015CrossRefGoogle Scholar
  32. Kramer EM, Draye X, Bennett MJ (2008) Practical systems biology, chap Modelling root growth and development. Taylor and Francis group, New York, USAGoogle Scholar
  33. Krupinski P, Jönsson H (2010) Modeling auxin-regulated development. Cold Spring Harb Perspect Biol 2: a001,560CrossRefGoogle Scholar
  34. Laskowski M, Grieneisen VA, Hofhuis H, ten Hove CA, Hogeweg P, Marée AFM, Scheres B (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6: e307CrossRefGoogle Scholar
  35. Lomax TL, Mehlhorn RJ, Briggs WR (1985) Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and ΔpH determinations. Proc Natl Acad Sci USA 82: 6541–6545CrossRefGoogle Scholar
  36. Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18: 2066–2073CrossRefGoogle Scholar
  37. Martin MH, Goldsmith MHM, Goldsmith TH (1990) On polar auxin transport in plant cells. J Math Biol 28: 197–223MathSciNetCrossRefzbMATHGoogle Scholar
  38. Merks RMH, Vande Peer Y, Inzé D, Beemster GTS (2007) Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci 12: 384–390CrossRefGoogle Scholar
  39. Mironova VV, Omelyanchuk NA, Yosiphon G, Fadeev SI, Kolchanov NA, Mjolsness E, Likhoshvai VA (2010) A plausible mechanism for auxin patterning along the developing root. BMC Syst Biol 4: 98CrossRefGoogle Scholar
  40. Mitchison GJ (1980) A model for vein formation in higher plants. Proc R Soc Lond B Biol 207: 79–109CrossRefGoogle Scholar
  41. Mitchison GJ (1980) The dynamics of auxin transport. Proc R Soc Lond B Biol 209: 489–511CrossRefGoogle Scholar
  42. Mitchison GJ, Hanke DE, Sheldrake AR (1981) The polar transport of auxin and vein patterns in plants. Philos Trans R Soc B 295: 461–471CrossRefGoogle Scholar
  43. Newell AC, Shipman PD, Sun Z (2008) Phyllotaxis: cooperation and competition between mechanical and biochemical processes. J Theor Biol 251: 421–439CrossRefGoogle Scholar
  44. Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100: 2987–2991CrossRefGoogle Scholar
  45. Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16: 1898–1911CrossRefGoogle Scholar
  46. Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14: 399–408CrossRefGoogle Scholar
  47. Perrine-Walker F, Doumas P, Lucas M, Vaissayre V, Beauchemin NJ, Band LR, Chopard J, Crabos A, Conejero G, Péret B, King JR, Verdeil JL, Hocher V, Franche C, Bennett MJ, Tisa LS, Laplaze L (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380Google Scholar
  48. Rahman A, Takahashi M, Shibasaki K, Wu S, Inaba T, Tsurumi S, Baskin TI (2010) Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell 22: 1762–1776CrossRefGoogle Scholar
  49. Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122: 481–490CrossRefGoogle Scholar
  50. Rolland-Lagan AG, Prusinkiewicz P (2005) Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J 44: 854–865CrossRefGoogle Scholar
  51. Shipley RJ, Jones GW, Dyson RJ, Sengers BG, Bailey CL, Catt CJ, Please CP, Malda J (2009) Design criteria for a printed tissue engineering construct: a mathematical homogenization approach. J Theor Biol 259: 489–502CrossRefGoogle Scholar
  52. Smith RS, Bayer EM (2009) Auxin transport-feedback models of patterning in plants. Plant Cell Environ 32: 1258–1271CrossRefGoogle Scholar
  53. Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103: 1301–1306CrossRefGoogle Scholar
  54. Stoma S, Lucas M, Chopard J, Schaedel M, Traas J, Godin C (2008) Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput Biol 4: e1000,207MathSciNetCrossRefGoogle Scholar
  55. Swarup R, Kramer EM, Perry P, Knox K, Leyser HMO, Haseloff J, Beemster GTS, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7: 1057–1065CrossRefGoogle Scholar
  56. Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19: 2186–2196CrossRefGoogle Scholar
  57. Szponarski W, Guibal O, Espuna M, Doumas P, Rossignol M, Gibrat R (1999) Reconstitution of an electrogenic auxin transport activity mediated by Arabidopsis thaliana plasma membrane proteins. FEBS lett 446: 153–156CrossRefGoogle Scholar
  58. Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63: 2738–2754CrossRefGoogle Scholar
  59. Twycross J, Band LR, Bennett MJ, King JR, Krasnogor N (2010) Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study. BMC Syst Biol 4: 34CrossRefGoogle Scholar
  60. Ubeda-Tomás S, Federici F, Casimiro I, Beemster GTS, Bhalerao R, Swarup R, Doerner P, Haseloff J, Bennett MJ (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr Biol 19: 1194–1199CrossRefGoogle Scholar
  61. Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12: 160–168CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Centre for Plant Integrative BiologyUniversity of NottinghamNottinghamUK
  2. 2.School of Mathematical SciencesUniversity of NottinghamUniversity Park, NottinghamUK

Personalised recommendations