Journal of Mathematical Biology

, Volume 65, Issue 2, pp 263–291 | Cite as

Mathematical model of the primary CD8 T cell immune response: stability analysis of a nonlinear age-structured system

  • Emmanuelle Terry
  • Jacqueline Marvel
  • Christophe Arpin
  • Olivier Gandrillon
  • Fabien Crauste
Article

Abstract

The primary CD8 T cell immune response, due to a first encounter with a pathogen, happens in two phases: an expansion phase, with a fast increase of T cell count, followed by a contraction phase. This contraction phase is followed by the generation of memory cells. These latter are specific of the antigen and will allow a faster and stronger response when encountering the antigen for the second time. We propose a nonlinear mathematical model describing the T CD8 immune response to a primary infection, based on three nonlinear ordinary differential equations and one nonlinear age-structured partial differential equation, describing the evolution of CD8 T cell count and pathogen amount. We discuss in particular the roles and relevance of feedback controls that regulate the response. First we reduce our system to a system with a nonlinear differential equation with a distributed delay. We study the existence of two steady states, and we analyze the asymptotic stability of these steady states. Second we study the system with a discrete delay, and analyze global asymptotic stability of steady states. Finally, we show some simulations that we can obtain from the model and confront them to experimental data.

Keywords

Immune response CD8 T cell Ordinary differential equations Delay equations 

Mathematics Subject Classification (2000)

34D20 34K60 35L60 35Q92 92C37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams B, Banks H, Davidian M, Kwon HD, Tran H, Wynne S, Rosenberg E (2005) HIV dynamics: modeling, data analysis, and optimal treatment protocols. J Comput Appl Math 184: 10–49MathSciNetMATHCrossRefGoogle Scholar
  2. Althaus C, Ganusov V, De Boer R (2007) Dynamics of CD8 T cell responses during acute and chronic lymphocytic choriomeningitis virus infection. J Immunol 179: 2944–2951Google Scholar
  3. Antia R, Bergstrom C, Pilyugin S, Kaech S, Ahmed R (2003) Models of {CD8+ Responses: 1. What is the antigen-independent proliferation program. J Theor Biol 221: 585–598MathSciNetCrossRefGoogle Scholar
  4. Antia R, Ganusov V, Ahmed R (2005) The role of models in understanding CD8+ T-cell memory. Nat Rev 5: 101–111CrossRefGoogle Scholar
  5. Appay V, Rowland-Jones S (2004) Lessons from the study of T-cell differentiation in persistent human virus infection. Seminars Immunol 16: 205–212CrossRefGoogle Scholar
  6. Arpin C, Angelov G, Walzer T, Tomkowiak M, Beloeil L, Marvel J (2002) Hyperproliferative response of a monoclonal memory CD8 T cell population is characterized by an increased frequency of clonogenic precursors. J Immunol 168: 2147–2153Google Scholar
  7. Baccam P, Beauchemin C, Macken C, Hayden F, Perelson A (2006) Kinetics of influenza A virus infection in humans. J Virol 80: 7590–7599CrossRefGoogle Scholar
  8. Bannard O, Kraman M, Fearon D (2009) Secondary replicative function of CD8+ T cells that had developed an effector function. Science 323: 505–509CrossRefGoogle Scholar
  9. Beauchemin C, McSharry J, Drusano G, Nguyen J, Went G, Ribeiro R, Perelson A (2008) Modeling amantadine treatment of influenza A virus in vitro. J Theor Biol 254: 439–451CrossRefGoogle Scholar
  10. Bidot C, Gruy F, Haudin CS, Hentati FE, Guy B, Lambert C (2008) Mathematical modeling of T-cell activation kinetic. J Comput Biol 15: 105–128MathSciNetCrossRefGoogle Scholar
  11. De Boer R, Oprea M, Antia R, Murali-Krishna K, Ahmed R, Perelson A (2001) Recruitment times, proliferation, and apoptosis rates during the CD8 T-cell response to lymphocytic choriomeningitis virus. J Virol 75(22): 10663–10669CrossRefGoogle Scholar
  12. Ennis F, Yi-Hua Q, Riley D, Rook A, Schild G, Pratt R, Potter C (1981) HLA-restricted virus-specific cytotoxic T-lymphocyte responses to live and inactivated influenza vaccines. The Lancet ii: 887–891CrossRefGoogle Scholar
  13. Guarda G, Hons M, Soriano S, Huang A, Polley R, Martin-Fontecha A, Stein J, Germain R, Lanzavecchia A, Sallusto F (2007) L-selectin-negative CCR7 effector and memory CD8+ T cells enter reactive lymph nodes and kill dendritic cells. Nat Immunol 8: 743–752CrossRefGoogle Scholar
  14. Hale J, Verduyn Lunel S (1993) Introduction to functional differential equations, Applied Mathematical Sciences, vol 99. Springer, New YorkGoogle Scholar
  15. Hermans I, Ritchie D, Yang J, Roberts J, Ronchese F (2000) CD8+ T cell-dependent elimination of DC in vivo limits the induction of antitumor immunity. J Immunol 164: 3095–3101Google Scholar
  16. Jenkins M, Mintern J, LaGruta N, Kedzierska K, Doherty P, Turner S (2008) Cell cycle-related acquisition of cytotoxic mediators defines the progressive differentiation to effector status for virus-specific CD8 T cells. J Immunol 181: 3818–3822Google Scholar
  17. Kaech S, Ahmed R (2001) Memory CD8+ T cell differentiation : initial antigen encounter triggers a developmental program in nave cells. Nat Immunol 2: 415–422Google Scholar
  18. Kemp R, Powell T, Dwyer D, Dutton R (2004) Cutting edge: regulation of CD8+ T cell effector population size. J Immunol 179: 2923–2927Google Scholar
  19. Kim P, Lee P, Levy D (2007) Modeling regulation mechanisms in the immune system. J Theor Biol 246: 33–69MathSciNetCrossRefGoogle Scholar
  20. Lee H, Topham D, Park S, Hollenbaugh J, Treanor J, Mosmann T, Jin X, Ward B, Miao H, Holden-Wiltse J, Perelson A, Zand M, Wu H (2009) Simulation and prediction of the adaptative immune response to influenza A virus infection. J Virol 83: 7151–7165CrossRefGoogle Scholar
  21. Murali-Krishna K, Altman J, MSuresh , Sourdive D, Zajax A, Miller J, Slansky J, Ahmed R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8: 177–187CrossRefGoogle Scholar
  22. Perelson A (2001) Modelling viral and immune system dynamics. Nat Rev Immunol 2: 28–36CrossRefGoogle Scholar
  23. Rouzine I, Murali-Krishna K, Ahmed R (2005) Generals die in friendly fire, or modeling immune response to HIV. J Comput Appl Math 184: 258–274MathSciNetMATHCrossRefGoogle Scholar
  24. Saenz R, Quinlivan M, Elton D, MacRae S, Blunden A, Mumford J, Daly J, Digard P, Cullinane A, Grenfell B, McCauley J, Wood J, Gog J (2010) Dynamics of influenza virus infection and pathology. J Virol 84: 3974–3983CrossRefGoogle Scholar
  25. Sprent J, Surh C (2001) Generation and maintenance of memory T cells. Curr Opin Immunol 13: 248–254CrossRefGoogle Scholar
  26. Stipdonk MV, Lemmens E, Schoenberger S (2001) Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2: 423–429Google Scholar
  27. Su M, Wladen P, Golan D, Eisen H (1993) Cognate peptide-induced destruction of CD8+ cytotoxic T lymphocytes is due to fratricide. J Immunol 151: 658–667Google Scholar
  28. Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B (2000) Response of naive and memory CD8+ T Cells to antigen stimulation in vivo. Nat Immunol 1: 47–53CrossRefGoogle Scholar
  29. Webb G (1985) Theory of nonlinear age-dependent population dynamics, Monographs and textbooks. In: Pure and Applied Mathematics, vol 89. Marcel Dekker, New YorkGoogle Scholar
  30. Wodarz D, May R, Nowak M (2000) The role of antigen-independent persistence of memory cytotoxic T lymphocytes. Int Immunol 12: 467–477CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Emmanuelle Terry
    • 1
    • 2
  • Jacqueline Marvel
    • 3
  • Christophe Arpin
    • 3
  • Olivier Gandrillon
    • 2
    • 4
  • Fabien Crauste
    • 1
    • 2
  1. 1.Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille JordanVilleurbanne-CedexFrance
  2. 2.INRIA Team Dracula, INRIA Center Grenoble Rhône-AlpesLyonFrance
  3. 3.INSERM U851 Université de Lyon, Université Lyon 1LyonFrance
  4. 4.Université de Lyon, Université Lyon 1, CNRS UMR 5534,Centre de Génétique et de Physiologie Moléculaire et CellulaireVilleurbanne-CedexFrance

Personalised recommendations