Journal of Mathematical Biology

, Volume 65, Issue 1, pp 157–180 | Cite as

On encodings of phylogenetic networks of bounded level

Article

Abstract

Phylogenetic networks have now joined phylogenetic trees in the center of phylogenetics research. Like phylogenetic trees, such networks canonically induce collections of phylogenetic trees, clusters, and triplets, respectively. Thus it is not surprising that many network approaches aim to reconstruct a phylogenetic network from such collections. Related to the well-studied perfect phylogeny problem, the following question is of fundamental importance in this context: When does one of the above collections encode (i.e. uniquely describe) the network that induces it? For the large class of level-1 (phylogenetic) networks we characterize those level-1 networks for which an encoding in terms of one (or equivalently all) of the above collections exists. In addition, we show that three known distance measures for comparing phylogenetic networks are in fact metrics on the resulting subclass and give the diameter for two of them. Finally, we investigate the related concept of indistinguishability and also show that many properties enjoyed by level-1 networks are not satisfied by networks of higher level.

Keywords

Phylogenetic networks Triplets Clusters Supernetwork Level-1 network Level-k network Weak hierarchy Consistency Metric Indistinguishable 

Mathematics Subject Classification (2000)

92B10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arenas M, Valiente G, Posada D (2008) Characterization of reticulate networks based on the coalescent. Mol Biol Evol 25: 2517–2520CrossRefGoogle Scholar
  2. Bandelt HJ, Dress AWM (1989) Weak hierarchies associated with similarity measures: an additive clustering technique. Bull Math Biol 51: 113–166MathSciNetGoogle Scholar
  3. Bandelt HJ, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human population using median networks. Genetics 141: 743–753Google Scholar
  4. Barthélémy JP, Brucker F, Osswald C (2004) Combinatorial optimization and hierarchical classifications. 4OR: Q J Oper Res 2(3): 179–219MATHCrossRefGoogle Scholar
  5. Batbedat A (1988) Les isomorphismes HTE et HTS, après la bijection de Benzécri-Johnson. Metron 46: 47–59MathSciNetMATHGoogle Scholar
  6. Bryant D, Moulton V (2004) NeighborNet: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21(2): 255–265CrossRefGoogle Scholar
  7. Cardona G, Llabrés M, Rosselló F, Valiente G (2008) A distance metric for a class of tree-sibling phylogenetic networks. Bioinformatics 24(13): 1481–1488CrossRefGoogle Scholar
  8. Cardona G, Llabres M, Rossello F, Valiente G (2009a) Metrics for phylogenetic networks I: generalization of the robinson-foulds metric. IEEE/ACM Trans Comput Biol Bioinform 6(1): 46–61CrossRefGoogle Scholar
  9. Cardona G, Llabres M, Rossello F, Valiente G (2009b) Metrics for phylogenetic networks II: nodal and triplets metrics. IEEE/ACM Trans Comput Biol Bioinform 6(3): 454–469CrossRefGoogle Scholar
  10. Chan HL, Jansson J, Lam TW, Yiu SM (2006) Reconstructing an ultrametric galled phylogenetic network from a distance matrix. J Bioinform Comput Biol 4(4): 807–832CrossRefGoogle Scholar
  11. Choy C, Jansson J, Sadakane K, Sung WK (2004) Computing the maximum agreement of phylogenetic networks. In: Proceedings of computing: the tenth Australasian theory symposium (CATS’04). Electronic notes in theoretical computer science, vol 91, pp 134–147Google Scholar
  12. Choy C, Jansson J, Sadakane K, Sung WK (2005) Computing the maximum agreement of phylogenetic networks. Theor Comput Sci 335(1): 93–107MathSciNetMATHCrossRefGoogle Scholar
  13. Dress AWM, Huber KT, Moulton V (2007) Some uses of the Farris transform in mathematics and phylogenetics—a review. Ann Combin 11(1): 1–37MathSciNetMATHCrossRefGoogle Scholar
  14. Fellows M, Hallet M, Stege U (2003) Analogs & duals of the mast problem for sequences & trees. J Algorithms 49(1): 192–216MathSciNetMATHCrossRefGoogle Scholar
  15. Gambette P, Berry V, Paul C (2009) The structure of level-k phylogenetic networks. In: Proceedings of the 20th annual symposium on combinatorial pattern matching (CPM’09)Google Scholar
  16. Grünewald S, Huber KT (2007) Identifying and defining trees. In: Gascuel O, Steel M (eds) Reconstructing evolution, new mathematical and computational advances. Oxford University Press, Oxford, pp 217–246Google Scholar
  17. Gusfield D, Eddhu S, Langley C (2003) Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proceedings of the 2003 IEEE computational systems bioinformatics conference (CSB2003), pp 363–374Google Scholar
  18. Holland BR, Huber KT, Moulton V, Lockhart PJ (2004) Using consensus networks to visualize contradictory evidence for species phylogeny. Mol Biol Evol 21(7): 1459–1461CrossRefGoogle Scholar
  19. Huson DH, Rupp R (2008) Summarizing multiple gene trees using cluster networks. In: Proceedings of the eighth workshop on algorithms in bioinformatics (WABI’08). Lecture notes in computer science, vol 5251. Springer, New York, pp 296–305Google Scholar
  20. Huson DH, Rupp R, Scornavacca C (2011) Phylogenetic networks. Cambridge University Press, CambridgeGoogle Scholar
  21. Jansson J, Sung WK (2006) Inferring a level-1 phylogenetic network from a dense set of rooted triplets. Theor Comput Sci 363(1): 60–68MathSciNetMATHCrossRefGoogle Scholar
  22. Jansson J, Nguyen NB, Sung WK (2006) Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM J Comput 35(5): 1098–1121MathSciNetMATHCrossRefGoogle Scholar
  23. Kanj IA, Nakhleh L, Than C, Xia G (2008) Seeing the trees and their branches in the network is hard. Theor Comput Sci 401: 153–164MathSciNetMATHCrossRefGoogle Scholar
  24. Moret BME, Nakhleh L, Warnow T, Linder CR, Tholse A, Padolina A, Sun J, Timme R (2004) Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM Trans Comput Biol Bioinform 1(1): 13–23CrossRefGoogle Scholar
  25. Moulton V, Huber KT (2006) Phylogenetic networks from multi-labeled trees. J Math Biol 52(5): 613–632MathSciNetMATHCrossRefGoogle Scholar
  26. Rosselló F, Valiente G (2009) All that glisters is not galled. Math Biosci 221(1): 54–59MathSciNetMATHCrossRefGoogle Scholar
  27. Semple C (2007) Hybridization networks. In: Gascuel O, Steel M (eds) Reconstructing evolution new mathematical and computational advances. Oxford University Press, Oxford, pp 277–314Google Scholar
  28. Semple C, Steel M (2003) Phylogenetics. Oxford University Press, OxfordMATHGoogle Scholar
  29. Song YS, Hein J (2005) Constructing minimal ancestral recombination graphs. J Comput Biol 12(2): 147–169CrossRefGoogle Scholar
  30. To TH, Habib M (2009) Level-k phylogenetic network can be constructed from a dense triplet set in polynomial time. In: Proceedings of the 20th annual symposium on combinatorial pattern matching (CPM’09)Google Scholar
  31. van Iersel L, Keijsper J, Kelk S, Stougie L, Hagen F, Boekhout T (2009a) Constructing level-2 phylogenetic networks from triplets. IEEE/ACM Trans Comput Biol Bioinform 6(4): 667–681CrossRefGoogle Scholar
  32. van Iersel L, Kelk S, Mnich M (2009b) Uniqueness, intractability and exact algorithms: reflections on level-k phylogenetic networks. J Bioinform Comput Biol 7(4): 597–623CrossRefGoogle Scholar
  33. Wang L, Zhang K, Zhang L (2001) Perfect phylogenetic networks with recombination. In: Proceedings of the 16th ACM symposium on applied computing (SAC’01), pp 46–50Google Scholar
  34. Willson SJ (2006) Unique solvability of certain hybrid networks from their distances. Ann Combin 10(1): 165–178MathSciNetMATHCrossRefGoogle Scholar
  35. Willson SJ (2011) Regular networks can be uniquely constructed from their trees. IEEE/ACM Trans Comput Biol Bioinform 8(3): 785–796CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.IML, CNRS, Université Marseille 2MarseilleFrance
  2. 2.School of Computing SciencesUniversity of East AngliaNorwichUK

Personalised recommendations