Advertisement

Journal of Mathematical Biology

, Volume 64, Issue 4, pp 657–666 | Cite as

Evolution of dispersal distance

  • Rick DurrettEmail author
  • Daniel Remenik
Article

Abstract

The problem of how often to disperse in a randomly fluctuating environment has long been investigated, primarily using patch models with uniform dispersal. Here, we consider the problem of choice of seed size for plants in a stable environment when there is a trade off between survivability and dispersal range. Ezoe (J Theor Biol 190:287–293, 1998) and Levin and Muller-Landau (Evol Ecol Res 2:409–435, 2000) approached this problem using models that were essentially deterministic, and used calculus to find optimal dispersal parameters. Here we follow Hiebeler (Theor Pop Biol 66:205–218, 2004) and use a stochastic spatial model to study the competition of different dispersal strategies. Most work on such systems is done by simulation or nonrigorous methods such as pair approximation. Here, we use machinery developed by Cox et al. (Voter model perturbations and reaction diffusion equations 2011) to rigorously and explicitly compute evolutionarily stable strategies.

Keywords

ESS Evolution Spatial models Voter model perturbation 

Mathematics Subject Classification (2000)

Primary 60K35 92D40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronson DG, Weinberger HF (1975) Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Partial differential equations and related topics, Springer Lecture Notes in Math 446, pp 5–49. Springer, New YorkGoogle Scholar
  2. Cohen D, Levin SA (1991) Dispersal in patchy environments: the effects of temporal and spatial structure. Theor Pop Biol 39: 63–99MathSciNetzbMATHCrossRefGoogle Scholar
  3. Cox JT, Durrett R, Perkins EA (2011) Voter model perturbations and reaction diffusion equations. arXiv:1103.1676Google Scholar
  4. Durrett R, Remenik D (2011) Voter model perturbations in two dimensions. Manuscript in preparationGoogle Scholar
  5. Durrett R, Neuhauser C (1994) Particle systems and reaction-diffusion equations. Ann Probab 22: 289–333MathSciNetzbMATHCrossRefGoogle Scholar
  6. Ezoe H (1998) Optimal dispersal range and seed size in a stable environment. J Theor Biol 190: 287–293CrossRefGoogle Scholar
  7. Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7: 355–369CrossRefGoogle Scholar
  8. Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269: 578–581CrossRefGoogle Scholar
  9. Hiebeler D (2004) Competition between near and far dispersers in spatially structured habitats. Theor Pop Biol 66: 205–218CrossRefGoogle Scholar
  10. Holley RA, Liggett TM (1975) Ergodic theorems for weakly interacting infinite systems and the voter model. Ann Probab 3: 643–663MathSciNetzbMATHCrossRefGoogle Scholar
  11. Kipnis C, Landim C (1999) Scaling limits of particle systems. Springer, New YorkzbMATHGoogle Scholar
  12. Kolmogoroff A, Petrovsky P, Piscounov N (1937) Étude de l’equations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bull Univ Etat Moscou Ser Int Set A 1: 1–25Google Scholar
  13. Levin SA, Cohen D, Hastings A (1984) Dispersal strategies in patchy environments. Theor Pop Biol 26: 165–191MathSciNetzbMATHCrossRefGoogle Scholar
  14. Levin SA, Muller-Landau HC (2000) The evolution of dispersal and seed size in plant communities. Evol Ecol Res 2: 409–435Google Scholar
  15. Levin SA, Muller-Landau HC, Nathan R, Chave J (2003) The ecology and evolution of seed dispersal: a theoretical perscpective. Annu Rev Ecol Syst 34: 575–604CrossRefGoogle Scholar
  16. Ludwig D, Levin SA (1991) Evolutionary stability of plant communities and maintenance of multiple dispersal types. Theor Pop Biol 40: 285–307zbMATHCrossRefGoogle Scholar
  17. Neuhauser C, Pacala SW (1999) An explicitly spatial version of the Lotka-Volterra model with interspecific competition. Ann Appl Probab 9: 1226–1259MathSciNetzbMATHCrossRefGoogle Scholar
  18. Spitzer F (1976) Principles of random walks. In: Graduate texts in mathematics, 2nd edn, vol 34. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsDuke UniversityDurhamUSA
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada
  3. 3.Departamento de Ingeniería MatemáticaUniversidad de ChileSantiagoChile

Personalised recommendations