Journal of Mathematical Biology

, Volume 64, Issue 3, pp 423–448

A metapopulation model for malaria with transmission-blocking partial immunity in hosts

Article

Abstract

A metapopulation malaria model is proposed using SI and SIRS models for the vectors and hosts, respectively. Recovered hosts are partially immune to the disease and while they cannot directly become infectious again, they can still transmit the parasite to vectors. The basic reproduction number \({\mathcal{R}_0}\) is shown to govern the local stability of the disease free equilibrium but not the global behavior of the system because of the potential occurrence of a backward bifurcation. Using type reproduction numbers, we identify the reservoirs of infection and evaluate the effect of control measures. Applications to the spread to non-endemic areas and the interaction between rural and urban areas are given.

Keywords

Malaria Reproduction number Type reproduction number Metapopulation 

Mathematics Subject Classification (2000)

92B05 92D30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams B, Kapan DD (2009) Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS One 4(8): e6763CrossRefGoogle Scholar
  2. Anderson RM, May RM (1991) Infectious diseases of humans. Oxford University Press, OxfordGoogle Scholar
  3. Ariey F, Duchemin J-B, Robert V (2003) Metapopulation concepts applied to falciparum malaria and their impact on the emergence and spread of chloroquine resistance. Infect Genet Evol 2: 185–192CrossRefGoogle Scholar
  4. Arino J (2009) Modeling and dynamics of infectious diseases. In: Series in contemporary applied mathematics, vol 11. Diseases in metapopulations. World Scientific Publishing, Singapore, pp 65–123Google Scholar
  5. Arino J, McCluskey CC, van den Driessche P (2003) Global results for an epidemic model with vaccination that exhibits backward bifurcation. SIAM J Appl Math 64(1): 260–276MATHMathSciNetCrossRefGoogle Scholar
  6. Aron JL (1988) Mathematical modeling of immunity to malaria. Math Biosci 90: 385–396MATHMathSciNetCrossRefGoogle Scholar
  7. Artavanis-Tsakonas K, Tongren JE, Riley EM (2003) The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clin Exp Immunol 133: 145–152CrossRefGoogle Scholar
  8. Auger P, Kouokam E, Sallet G, Tchuente M, Tsanou B (2008) The Ross-Macdonald model in a patchy environment. Math Biosci 216: 123–131MATHMathSciNetCrossRefGoogle Scholar
  9. Berman A, Plemmons RJ (1979) Nonnegative matrices in the mathematical sciences. Academic Press, New YorkMATHGoogle Scholar
  10. Chitnis N, Cushing JM, Hyman JM (2006) Bifurcation analysis of a mathematical model for malaria transmission. SIAM J Appl Math 67: 24–45MATHMathSciNetCrossRefGoogle Scholar
  11. Chiyaka C, Garira W, Dube S (2007) Transmission model of endemic human malaria in a partially immune population. Math Comput Model 46: 806–822MATHMathSciNetCrossRefGoogle Scholar
  12. Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \({\mathcal{R}_0}\) in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365–382MATHMathSciNetCrossRefGoogle Scholar
  13. Dietz K, Molineaux L, Thomas A (1974) A malaria model tested in the African savannah. Bull World Health Organisation 50: 347–357Google Scholar
  14. Doolan DL, Dobaño C, Baird JK (2009) Acquired immunity to malaria. Clin Microbiol Rev 22(1): 13–36CrossRefGoogle Scholar
  15. Drakeley CJ, Bousema JT, Akim NIJ, Teelen K, Roeffen W, Lensen AH, Bolmer M, Eling W, Sauerwein RW (2006) Transmission-reducing immunity is inversely related to age in Plasmodium falciparum gametocyte carriers. Parasite Immunol 28: 185–190CrossRefGoogle Scholar
  16. Ducrot A, Sirima SB, Somé B, Zongo P (2009) A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host. J Biol Dyn 3: 574–598MathSciNetCrossRefGoogle Scholar
  17. Dushoff J, Huang W, Castillo-Chávez C (1998) Backward bifurcations and catastrophe in simple models of fatal diseases. J Math Biol 36: 227–248MATHMathSciNetCrossRefGoogle Scholar
  18. Ejercito A, Urbino CM (1951) Flight range of gravid and newly emerged Anopheles. Bull World Health Organization 3: 663–671Google Scholar
  19. Gatton ML, Cheng Q (2004) Modeling the development of acquired clinical immunity to Plasmodium falciparum malaria. Infect Immun 72(11): 6538–6545CrossRefGoogle Scholar
  20. Githeko AK, Ayisi JM, Odada PK, Atieli FK, Ndenga BA, Githure JI, Yan G (2006) Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control. Malar J 5:107Google Scholar
  21. Heesterbeek JAP, Roberts MG (2007) The type-reproduction number T in models for infectious disease control. Math Biosci 206: 3–7MATHMathSciNetCrossRefGoogle Scholar
  22. Kalipeni E (1993) Determinants of infant mortality in Malawi: a spatial perspective. Soc Sci Med 37: 183–198CrossRefGoogle Scholar
  23. Kaslow DC (1993) Transmission-blocking immunity against malaria and other vector-borne diseases. Curr Opin Immunol 3: 557–565CrossRefGoogle Scholar
  24. Le Menach A, Ellis Mckenzie F, Flahault A, Smith DL (2005) The unexpected importance of mosquito oviposition behaviour for malaria: non-producive larval habitats can be sources for malaria transmission. Malar J 4(1): 23CrossRefGoogle Scholar
  25. Ludwig D, Jones DD, Holling CS (1978) Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J Anim Ecol 47: 315–332CrossRefGoogle Scholar
  26. Ngwa GA, Shu WS (2000) A mathematical model for endemic malaria with variable human and mosquito populations. Math Comput Model 32: 747–763MATHMathSciNetCrossRefGoogle Scholar
  27. Paul RE, Bonnet S, Boudin C, Tchuinkam T, Robert V (2007) Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites. Malar J 6: 123CrossRefGoogle Scholar
  28. Roberts MG, Heesterbeek JAP (2003) A new method to estimate the effort required to control an infectious disease. Proc R Soc Lond B 270: 1359CrossRefGoogle Scholar
  29. Rodríguez DJ, Torres-Sorando L (2001) Models of infectious diseases in spatially heterogeneous environments. Bull Math Biol 63: 547–571CrossRefGoogle Scholar
  30. Russell PF, Santiago D (1934) Flight range of Anopheles in the Philippines. Second experiment with stained mosquitoes. Am J Trop Med 14(5): 407–424Google Scholar
  31. Smith TA, Leuenberger R, Lengeler C (2001) Child mortality and malaria transmission intensity in Africa. Trends Parasitol 17: 145–149CrossRefGoogle Scholar
  32. Smith DL, Dushoff J, Ellis Mckenzie F (2005) The risk of a mosquito-borne infection in a heterogeneous environnement. PLoS Biol 2: 1957–1964Google Scholar
  33. Taylor-Robinson AW (2002) A model of development of acquired immunity to malaria in humans living under endemic conditions. School of Biology, University of Leeds, UK 58(2): 148–156MathSciNetGoogle Scholar
  34. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180: 29–48MATHMathSciNetCrossRefGoogle Scholar
  35. WHO (2005) The World Health Report. Technical report. World Health Organization. http://www.who.int/whr/2005/en/
  36. Yang HM (2000) Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector). Revista de Saúde Pública 34: 223–231CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ManitobaWinnipegCanada
  2. 2.IMB UMR CNRS 5251 & INRIA Bordeaux Sud Ouest AnubisUniversité de BordeauxBordeauxFrance
  3. 3.Laboratoire d’Analyse Numérique d’Informatique et de Biomathématique & INRIA Bordeaux Sud Ouest AnubisUniversité de Bordeaux & Université de OuagadougouBordeauxFrance

Personalised recommendations