Journal of Mathematical Biology

, Volume 64, Issue 1–2, pp 319–340 | Cite as

Analysis of the Trojan Y chromosome model for eradication of invasive species in a dendritic riverine system

  • Juan B. Gutierrez
  • Monica K. Hurdal
  • Rana D. Parshad
  • John L. Teem


The use of Trojan Y chromosomes has been proposed as a genetic strategy for the eradication of invasive species. The strategy is particularly relevant to invasive fish species that have XY sex determination system and are amenable to sex-reversal. In this paper we study the dynamics of an invasive fish population occupying a dendritic domain in which Trojan individuals bearing multiple Y chromosomes have been released as a means of eradication. We demonstrate the existence of a bounded absorbing set that represents extinction of the invasive species irrespective of the dendritic configuration. The method of analysis used to obtain global estimates could be applied to other population problems and other geometries.


Trojan Y chromosome model Eradication Invasive species Population dynamics Global attractor Absorbing set 

Mathematics Subject Classification (2000)

35K57 35Q92 92D25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen M (1991) Mechanistic models for the seed shadows of wind-dispersed plants. Am. Nat. 137: 476–497CrossRefGoogle Scholar
  2. Cantrell RS, Cosner C (1999) Diffusion models for population dynamics incorporating individual behavior at boundaries: applications to refuge design. Theor Popul Biol 55(2): 189–207CrossRefzbMATHGoogle Scholar
  3. Cantrell RS, Cosner C (2003) Spatial ecology via reaction-diffusion equations. Wiley, West SussexzbMATHGoogle Scholar
  4. Charles S, de la Parra RB, Mallet J, Persat H, Auger P (1998) A density dependent model describing salmo trutta population dynamics in an arborescent river network. Effects of dams and channelling. Comptes Rendus de l’Acad des Sci Ser III Sci de la Vie 321(12): 979–990Google Scholar
  5. Cotton S, Wedekind C (2007) Control of introduced species using Trojan sex chromosomes. Trends Ecol Evol 22(9): 441–443CrossRefGoogle Scholar
  6. Cotton S, Wedekind C (2007) Introduction of trojan sex chromosomes to boost population growth. J Theor Biol 249(1): 153–161CrossRefGoogle Scholar
  7. Fagan W, Grant EC, Lynch H, Unmack P (2009) Riverine landscapes: ecology for an alternative geometry. In: Cantrell RS, Cosner C, Ruan S Spatial ecology, chap. 5. CRC Press, Boca Raton, pp 85–100Google Scholar
  8. Fisher R (1937) The wave of advance of advantageous genes. Ann Eugen 7: 355–369CrossRefGoogle Scholar
  9. Gutierrez JB (2009) Mathematical analysis of the use of trojan sex chromosomes as means of eradication of invasive species. PhD thesis, Florida State University, Tallahassee, FLGoogle Scholar
  10. Gutierrez JB, Teem JL (2006) A model describing the effect of sex-reversed YY fish in an established wild population: the use of a Trojan Y chromosome to cause extinction of an introduced exotic species. J Theor Biol 241(22): 333–341CrossRefMathSciNetGoogle Scholar
  11. Hart P, Reynolds J (2002) Handbook of fish biology and fisheries, vol 1. Blackwell Science Ltd, MaldenCrossRefGoogle Scholar
  12. Hill J, Cichra C (2005) Eradication of a reproducing population of Convict Cichlids, Cichlasoma nigrofasciatum (Cichlidae) in North-Central Florida.. Florida Sci 68(2): 65–74Google Scholar
  13. James M, Mason PAL, Bode L (2002) The structure of reef fish metapopulations: modelling larval dispersal and retention patterns. Proc R Soc 269: 2079–2086CrossRefGoogle Scholar
  14. Johnson A, Hatfield C, Milne B (1995) Simulated diffusion dynamics in river networks. Ecol Model 83(3): 311–325CrossRefGoogle Scholar
  15. Kaiser BA, Burnett KM (2010) Spatial economic analysis of early detection and rapid response strategies for an invasive species. Resour Energ Econ (in proof) (corrected proof)Google Scholar
  16. McIntosh CR, Shogren JF, Finnoff DC (2010) Invasive species and delaying the inevitable: Valuation evidence from a national survey. Ecol Econ 69(3): 632–640CrossRefGoogle Scholar
  17. Muneepeerakul R, Weitz JS, Levin SA, Rinaldo A, Rodriguez-Iturbe I (2007) A neutral metapopulation model of biodiversity in river networks. J Theor Biol 245(2): 351–363CrossRefMathSciNetGoogle Scholar
  18. Myers J, Simberloff D, Kuris A, Carey J (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15(8): 316–320CrossRefGoogle Scholar
  19. Okubo A, Levin S (2001) Diffusion and ecological problems: modern perspectives. Springer, New YorkGoogle Scholar
  20. OTA (1993) Harmful non-indigenous species in the United States. OTA-F-565 US Congress, Office of Technology Assessment, Washington, DCGoogle Scholar
  21. Quarteroni A, Sacco R, Salieri F (2000) Numerical mathematics. Springer, New YorkGoogle Scholar
  22. Robinson J (2001) Infinite-dimensional dynamical systems. Cambridge University Press, New YorkCrossRefGoogle Scholar
  23. Shafland P, Foote K (1979) A reproducing population of Serrasalmus humeralis Valenciennes in southern Florida. Florida Sci 42(4): 206–214Google Scholar
  24. Skellam J (1951) Random dispersal in theoretical populations. Biometrika 38: 433–435MathSciNetGoogle Scholar
  25. Strauss WA (1992) Partial differential equations: an intoduction. Wiley, NewyorkGoogle Scholar
  26. Zanden MJV, Hansen GJA, Higgins SN, Kornis MS (2010) A pound of prevention, plus a pound of cure: early detection and eradication of invasive species in the laurentian great lakes. J Great Lakes Res 36(1): 199–205CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Juan B. Gutierrez
    • 1
  • Monica K. Hurdal
    • 2
  • Rana D. Parshad
    • 3
  • John L. Teem
    • 4
  1. 1.Mathematical Biosciences InstituteOhio State UniversityColumbusUSA
  2. 2.Department of MathematicsFlorida State UniversityTallahasseeUSA
  3. 3.Department of Mathematics and Computer ScienceClarkson UniversityPotsdamUSA
  4. 4.Division of AquacultureFlorida Department of Agriculture and Consumer ServicesTallahasseeUSA

Personalised recommendations