Advertisement

Journal of Mathematical Biology

, Volume 64, Issue 1–2, pp 163–210 | Cite as

A general stochastic model for sporophytic self-incompatibility

  • Sylvain Billiard
  • Viet Chi Tran
Article

Abstract

Disentangling the processes leading populations to extinction is a major topic in ecology and conservation biology. The difficulty to find a mate in many species is one of these processes. Here, we investigate the impact of self-incompatibility in flowering plants, where several inter-compatible classes of individuals exist but individuals of the same class cannot mate. We model pollen limitation through different relationships between mate availability and fertilization success. After deriving a general stochastic model, we focus on the simple case of distylous plant species where only two classes of individuals exist. We first study the dynamics of such a species in a large population limit and then, we look for an approximation of the extinction probability in small populations. This leads us to consider inhomogeneous random walks on the positive quadrant. We compare the dynamics of distylous species to self-fertile species with and without inbreeding depression, to obtain the conditions under which self-incompatible species can be less sensitive to extinction while they can suffer more pollen limitation.

Keywords

Birth and death process ODE approximation Inhomogeneous random walk on the positive quadrant Inbreeding depression Extinction probability Mating system Distyly 

Mathematics Subject Classification (2000)

92D40 92D25 60J80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allee WC, Emerson O, Park T, Schmidt K (1949) Principles of animal ecology. Saunders, PhiladelphiaGoogle Scholar
  2. Ashman TL, Knight T, Steets J, Amarasekare P, Burd M, Campbell D, Dudash M, Johnston M, Mazer S, Mitchell R, Morgan M, Wilson W (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85(9): 2408–2421CrossRefGoogle Scholar
  3. Athreya K, Ney P (1970) Branching Processes. SpringerGoogle Scholar
  4. Baldi P, Mazliak L, Priouret P (2002) Martingales and Markov chains. Chapmann & Hall, Boca RatonzbMATHGoogle Scholar
  5. Barrett S, Shore J (2008) New insights on heterostyly: comparative biology, ecology and genetics. In: Franklin-Tong V (eds) Self-incompatibility in flowering plants. Springer, Berlin, pp 3–32CrossRefGoogle Scholar
  6. Bateman A (1952) Self-incompatibility systems in angiosperms i. theory. Heredity 6: 285–310CrossRefGoogle Scholar
  7. Bessa-Gomes C, Legendre S, Clobert J (2004) Allee effects, mating systems and the extinction risk in populations with two sexes. Ecol Lett 7: 802–812CrossRefGoogle Scholar
  8. Billiard S, Castric V, Vekemans X (2007) A general model to explore complex dominance patterns in plant sporophytic self-incompatibility systems. Genetics 175: 1351–1369CrossRefGoogle Scholar
  9. Blum M, Tran VC (2010) HIV with contact-tracing: a case study in approximate bayesian computation. Biostatistics 11(4): 644–660CrossRefGoogle Scholar
  10. Castric V, Vekemans X (2004) Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Mol Ecol 13: 2873–2889CrossRefGoogle Scholar
  11. Champagnat N, Ferrière R, Méléard S (2006) Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models via timescale separation. Theor Popul Biol 69: 297–321CrossRefzbMATHGoogle Scholar
  12. Clémençon S, Tran V, Arazoza HD (2008) A stochastic SIR model with contact-tracing: large population limits and statistical inference. J Biol Dyn 2(4): 391–414CrossRefGoogle Scholar
  13. Engen S, Lande R, Saether B (2003) Demographic stochasticity and allee effects in populations with two sexes. Ecology 84: 2378–2386CrossRefGoogle Scholar
  14. Ethier S, Kurtz T (1986) Markov processus, characterization and convergence. Wiley, New YorkGoogle Scholar
  15. Fayolle G, Malyshev V, Menshikov M (1992) Random walks in a quarter plane with zero drifts. Annales de l’Institut Henri Poincaré 28(2): 179–194zbMATHMathSciNetGoogle Scholar
  16. Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab 14(4): 1880–1919CrossRefzbMATHMathSciNetGoogle Scholar
  17. Gascoigne J, Berec L, Gregory S, Courchamp F (2009) Dangerously few liaisons: a review of mate-finding allee effects. Popul Ecol 51: 355–372CrossRefGoogle Scholar
  18. Haneveld LK, Pittenger A (1990) Escape time for a random walk from an orthant. Stoch Process Appl 35: 1–9CrossRefzbMATHGoogle Scholar
  19. Hoebee S, Thrall P, Young A (2008) Integrating population demography, genetics and self-incompatibility in a viability assessment of the Wee Jasper Grevilla (Grevilla iaspicula McGill., Proteaceae). Conser Genet 9: 515–529CrossRefGoogle Scholar
  20. Igic B, Lande R, Kohn J (2008) Loss of self-incompatibility and its evolutionary consequences. Int J Plant Sci 169: 93–104CrossRefGoogle Scholar
  21. Ikeda N, Watanabe S (1989) Stochastic differential equations and diffusion processes, vol 24, 2nd edn. North-Holland Publishing Company, AmsterdamGoogle Scholar
  22. Joffe A, Métivier M (1986) Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv Appl Probab 18: 20–65CrossRefzbMATHGoogle Scholar
  23. Kirchner F, Robert A, Colas B (2006) Modelling the dynamics of introduced populations in the narrow-endemic Centaurea corymbosa: a demo-genetic integration. J Appl Ecol 43: 1011–1021CrossRefGoogle Scholar
  24. Kurkova I, Raschel K (2011) Random walks in \({\mathbb{Z}_+^2}\) with non-zero drift absorbed at the axes. Bulletin de la Société Mathématique de France (to appear)Google Scholar
  25. Lafitte-Godillon P, Raschel K, Tran V (in prep.) Extinction probabilities for a distylous plant populationGoogle Scholar
  26. Lande R (1998) Demographic stochasticity and Allee effect on a scale with isotropic noise. OIKOS 83(2): 353–358CrossRefGoogle Scholar
  27. Larson B, Barrett S (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69: 503–520CrossRefGoogle Scholar
  28. Leducq J, Gosset C, Poiret M, Hendoux F, Vekemans X, Billiard S (2010) An experimental study of the S-allee effect in the self-incompatible plant Biscutella neustriaca. Conserv Genet 11: 497–508CrossRefGoogle Scholar
  29. Levin D, Kelley C, Sarkar S (2009) Enhancement of Allee effects in plants due to self-incompatibility alleles. J Ecol 97: 518–527CrossRefGoogle Scholar
  30. Lindvall T (2002) Lectures on the coupling method. Dover, New YorkzbMATHGoogle Scholar
  31. Lynch M, Conery J, Burger R (1995) Mutational meltdowns in sexual populations. Evolution 49: 1067–1080CrossRefGoogle Scholar
  32. Pannell J, Barett S (1998) Baker’s law revisited: reproductive assurance in a metapopulation. Evolution 52: 657–668CrossRefGoogle Scholar
  33. Perez-Barrales R, Vargas P, Arroyo J (2006) New evidence for the darwinian hypothesis of heterostyly: breeding systems and pollinators in narcissus sect. apodanthi. New Phytol 171: 553–567CrossRefGoogle Scholar
  34. Porcher E, Lande R (2005a) The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation. J Evol Biol 18: 497–508CrossRefGoogle Scholar
  35. Porcher E, Lande R (2005b) Loss of gametophytic self-incompatibility with evolution of inbreeding depression. Evolution 59(1): 46–60Google Scholar
  36. Revuz D (1984) Markov chains, North-Holland mathematical library, vol 11, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  37. Roelly S (1986) A criterion of convergence of measure-valued processes: Application to measure branching processes. Stochastics 17: 43–65CrossRefzbMATHMathSciNetGoogle Scholar
  38. Saether B, Engen S, Lande R, Moller A, Bensch S, Hasselquist D, Beier J, Leisler B (2004) Time to extinction in relation to mating system and type of density regulation in populations with two sexes. J Animal Ecol 73: 925–934CrossRefGoogle Scholar
  39. Sakai S, Wright S (2008) Reproductive ecology of 21 coexisting psychotria species (rubiaceae): when is heterostyly lost. Biol J Linn Soc 93: 125–134CrossRefGoogle Scholar
  40. Schoen D, Johnston M, L’Heureux AM, Marsolais J (1997) Evolutionary history of the mating system in amsinckia (boraginaceae). Evolution 51: 1090–1099CrossRefGoogle Scholar
  41. Tran VC (2008) Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM: P&S 12: 345–386CrossRefzbMATHMathSciNetGoogle Scholar
  42. Vekemans X, Schierup M, Christiansen F (1998) Mate availability and fecundity selection in mutli-allelic self-incompatibility systems in plants. Evolution 52: 19–29CrossRefGoogle Scholar
  43. Verhulst F (2000) Nonlinear differential equations and dynamical systems. Universitext, 2nd edn. Springer, BerlinGoogle Scholar
  44. Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. Am Nat 169(3): 383–397CrossRefGoogle Scholar
  45. Wright S (1939) The distribution of self-sterility alleles in populations. Genetics 24: 538–552Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Génétique et évolution des populations végétales, UFR de Biologie, FRE CNRS 3268Université des Sciences et Technologies de Lille 1Villeneuve d’Ascq CedexFrance
  2. 2.Laboratoire Paul Painlevé, UFR de Mathématiques, UMR CNRS 8524Université des Sciences et Technologies de Lille 1Villeneuve d’Ascq CedexFrance
  3. 3.Centre de Mathématiques Appliquées, UMR CNRS 7641Ecole PolytechniquePalaiseau cedexFrance

Personalised recommendations