Advertisement

Journal of Mathematical Biology

, Volume 64, Issue 1–2, pp 149–162 | Cite as

The link between segregation and phylogenetic diversity

  • David Bryant
  • Steffen Klaere
Article

Abstract

We derive an invertible transform linking two widely used measures of species diversity: phylogenetic diversity and the expected proportions of segregating (non-constant) sites. We assume a bi-allelic (two-state), symmetric, finite site model of substitution. Like the Hadamard transform of Hendy and Penny, the transform can be expressed independently of the underlying phylogeny. Our results bridge work on diversity from two quite distinct scientific communities.

Keywords

Segregating sites Phylogenetic diversity Hadamard transform Phylogenetics 

Mathematics Subject Classification (2000)

92D15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner M (1997) Combinatorial theory. Classics in mathematics. Springer, BerlinGoogle Scholar
  2. Cavender JA (1978) Taxonomy with confidence. Math Biosci 40: 271–280CrossRefzbMATHMathSciNetGoogle Scholar
  3. Cohen H (2007) Number theory: analytic and modern tools, volume II. Graduate Texts in Mathematics. Springer, BerlinGoogle Scholar
  4. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1): 1–10CrossRefGoogle Scholar
  5. Farris JS (1973) A probability model for inferring evolutionary trees. Syst Zool 22(3): 250–256CrossRefGoogle Scholar
  6. Feller W (1968) An introduction to probability theory and its applications, 3rd edn. Wiley, New YorkzbMATHGoogle Scholar
  7. Greene D, Knuth D (1990) Mathematics for the analysis of algorithms. Progress in computer science and applied logic. Birkhäuser, BostonGoogle Scholar
  8. Hendy M, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38(4): 297–309CrossRefGoogle Scholar
  9. Hendy MD (1989) The relationship between simple evolutionary tree models and observable sequence data. Syst Zool 38(4): 310–321CrossRefGoogle Scholar
  10. Hendy MD (2005) Hadamard conjugation: an analytic tool for phylogenetics. In: Gascuel O (eds) Mathematics of evolution and phylogeny, chap 6. Oxford University Press, Oxford, pp 143–177Google Scholar
  11. Hendy MD, Penny D (1993) Spectral analysis of phylogenetic data. J Classif 10(1): 5–24CrossRefzbMATHMathSciNetGoogle Scholar
  12. Hendy MD, Snir S (2008) Hadamard conjugation for the Kimura 3st model: combinatorial proof using path sets. IEEE ACM TCBB 5(3): 461–471Google Scholar
  13. Minh BQ, Klaere S, von Haeseler A (2006) Phylogenetic diversity within seconds. Syst Biol 55(5): 769–773CrossRefGoogle Scholar
  14. Minh BQ, Klaere S, von Haeseler A (2009) Taxon selection under split diversity. Syst Biol 58(6): 586–594CrossRefGoogle Scholar
  15. Moulton V, Semple C, Steel MA (2007) Optimizing phylogenetic diversity under constraints. J Theor Biol 246(1): 186–194CrossRefMathSciNetGoogle Scholar
  16. Neyman J (1971) Molecular studies of evolution: a source of novel statistical problems. In: Gupta S, Yackel J (eds) Statistical decision theory and related topics. Academic Press, New York, pp 1–27Google Scholar
  17. Phillips M, Penny D (2003) The root of the mammalian tree inferred from whole mitochondrial genomes. Cell 28(2): 171–185Google Scholar
  18. Semple C, Steel M (2003) Phylogenetics. Oxford lectures series in mathematics and its applications. Oxford University Press, OxfordGoogle Scholar
  19. Spillner A, Nguyen BT, Moulton V (2008) Computing phylogenetic diversity for split systems. IEEE ACM TCBB 5(2): 235–244Google Scholar
  20. Stanley R (2002) Enumerative combinatorics. No. v. 1 in Cambridge studies in advanced mathematics. Cambridge University Press, CambridgeGoogle Scholar
  21. Székely LA, Steel MA, Erdös PL (1993) Fourier calculus on evolutionary trees. Adv Appl Math 14(2): 200–210CrossRefzbMATHGoogle Scholar
  22. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theoret Population Biol 7(2): 256–276CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department Mathematics and Statistics, Allan Wilson Center for Molecular Ecology and EvolutionUniversity of OtagoDunedinNew Zealand

Personalised recommendations