Advertisement

Journal of Mathematical Biology

, Volume 63, Issue 6, pp 1139–1200 | Cite as

Differential geometry based solvation model II: Lagrangian formulation

  • Zhan Chen
  • Nathan A. Baker
  • G. W. Wei
Article

Abstract

Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent–solute interaction potential. The nonpolar solvation model is completed with a Poisson–Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent–solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of computation, thanks to the equivalence of the Laplace–Beltrami operator in the two representations. The coupled partial differential equations (PDEs) are solved with an iterative procedure to reach a steady state, which delivers desired solvent–solute interface and electrostatic potential for problems of interest. These quantities are utilized to evaluate the solvation free energies and protein–protein binding affinities. A number of computational methods and algorithms are described for the interconversion of Lagrangian and Eulerian representations, and for the solution of the coupled PDE system. The proposed approaches have been extensively validated. We also verify that the mean curvature flow indeed gives rise to the minimal molecular surface and the proposed variational procedure indeed offers minimal total free energy. Solvation analysis and applications are considered for a set of 17 small compounds and a set of 23 proteins. The salt effect on protein–protein binding affinity is investigated with two protein complexes by using the present model. Numerical results are compared to the experimental measurements and to those obtained by using other theoretical methods in the literature.

Keywords

Differential geometry based multiscale model Poisson–Boltzmann equation Potential driving geometric flows Solvation free energy Implicit solvent model Laplace–Beltrami operator Protein–protein interaction 

Mathematics Subject Classification (2000)

92 35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams JB, Rosso L, Tuckerman ME (2006) Efficient and precise solvation free energies via alchemical adiabatic molecular dynamics. J Chem Phys 125(7): 074115CrossRefGoogle Scholar
  2. Amovilli C, Mennucci B (1997) Self-consistent-field calculation of Pauli repulsion and dispersion contributions to the solvation free energy in the polarizable continuum model. J Phys Chem B 101(6): 1051–1057CrossRefGoogle Scholar
  3. Antosiewicz J, McCammon JA, Gilson MK (1996) The determinants of pK as in proteins. Biochemistry 35(24): 7819–7833CrossRefGoogle Scholar
  4. Ashbaugh HS (2000) Convergence of molecular and macroscopic continuum descriptions of ion hydration. J Phys Chem B 104(31): 7235–7238CrossRefGoogle Scholar
  5. Azuara C, Lindahl E, Koehl P, Orland H, Delarue M (2006) PDB_Hydro: incorporating dipolar solvents with variable density in the Poisson–Boltzmann treatment of macromolecule electrostatics. Nucl Acids Res 34: W38–W42CrossRefGoogle Scholar
  6. Baker NA (2004) Poisson–Boltzmann methods for biomolecular electrostatics. Methods Enzymol 383: 94–118CrossRefGoogle Scholar
  7. Baker NA (2005) Biomolecular applications of Poisson–Boltzmann methods. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, vol 21. Wiley, HobokenGoogle Scholar
  8. Baker NA (2005) Improving implicit solvent simulations: a Poisson-centric view. Curr Opin Struct Biol 15(2): 137–143CrossRefGoogle Scholar
  9. Baker NA, Bashford D, Case DA (2006) Implicit solvent electrostatics in biomolecular simulation. In: Leimkuhler B, Chipot C, Elber R, Laaksonen A, Mark A, Schlick T, Schutte C, Skeel R (eds) New algorithms for macromolecular simulation. Springer, BerlinGoogle Scholar
  10. Baker NA, McCammon JA (2003) Electrostatic interactions. In: Bourne P, Weissig H (eds) Structural bioinformatics. Wiley, New York, pp 427–440Google Scholar
  11. Banavali NK, Im W, Roux B (2002) Electrostatic free energy calculations using the generalized solvent boundary potential method. J Chem Phys 117(15): 7381–7388CrossRefGoogle Scholar
  12. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107: 3210–3221CrossRefGoogle Scholar
  13. Bashford D, Case DA (2000) Generalized Born models of macromolecular solvation effects. Annu Rev Phys Chem 51: 129–152CrossRefGoogle Scholar
  14. Bashford D, Karplus M (1990) pK a’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29(44): 10219–10225CrossRefGoogle Scholar
  15. Bates PW, Chen Z, Sun YH, Wei GW, Zhao S (2009) Geometric and potential driving formation and evolution of biomolecular surfaces. J Math Biol 59: 193–231MathSciNetzbMATHCrossRefGoogle Scholar
  16. Bates PW, Wei GW, Zhao S (2006a) The minimal molecular surface. arXiv:q-bio/0610038v1 [q-bio.BM]Google Scholar
  17. Bates PW, Wei GW, Zhao S (2006b) The minimal molecular surface. Midwest quantitative biology conference. Mission Point Resort, Mackinac Island, MI, September 29–October 1Google Scholar
  18. Bates PW, Wei GW, Zhao S (2008) Minimal molecular surfaces and their applications. J Comput Chem 29(3): 380–391CrossRefGoogle Scholar
  19. Beglov D, Roux B (1996) Solvation of complex molecules in a polar liquid: an integral equation theory. J Chem Phys 104(21): 8678–8689CrossRefGoogle Scholar
  20. Beglov D, Roux B (1997) An integral equation to describe the solvation of polar molecules in liquid water. J Phys Chem B 101(39): 7821–7826CrossRefGoogle Scholar
  21. Berger M, Gostiaux B (1988) Differential geometry: manifolds, curves, and surfaces. Springer, BerlinzbMATHGoogle Scholar
  22. Bergstrom CAS, Strafford M, Lazorova L, Avdeef A, Luthman K, Artursson P (2003) Absorption classification of oral drugs based on molecular surface properties. J Med Chem 46(4): 558–570CrossRefGoogle Scholar
  23. Bertonati C, Honig B, Alexov E (2007) Poisson–Boltzmann calculations of nonspecific salt effects on protein–protein binding free energy. Biophys J 92: 1891–1899CrossRefGoogle Scholar
  24. Bertozzi AL, Greer JB (2004) Low-curvature image simplifiers: Global regularity of smooth solutions and Laplacian limiting schemes. Commun Pure Appl Math 57(6): 764–790MathSciNetzbMATHCrossRefGoogle Scholar
  25. Blomberg N, Gabdoulline RR, Nilges M, Wade RC (1999) Classification of protein sequences by homology modeling and quantitative analysis of electrostatic similarity. Proteins 37(3): 379–387CrossRefGoogle Scholar
  26. Blomgren P, Chan T (1998) Color TV: total variation methods for restoration of vector-valued images. IEEE Trans Image Process 7(3): 304–309CrossRefGoogle Scholar
  27. Boschitsch AH, Fenley MO (2004) Hybrid boundary element and finite difference method for solving the nonlinear Poisson–Boltzmann equation. J Comput Chem 25(7): 935–955CrossRefGoogle Scholar
  28. Bostrom M, Tavares FW, Bratko D, Ninham BW (2005) Specific ion effects in solutions of globular proteins: Comparison between analytical models and simulation. J Phys Chem B 109(51): 24489–24494CrossRefGoogle Scholar
  29. Cai W, Deng SZ (2003) An upwinding embedded boundary method for Maxwell’s equations in media with material interfaces: 2d case. J Comput Phys 190: 159–183MathSciNetzbMATHCrossRefGoogle Scholar
  30. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107: 3032–3041CrossRefGoogle Scholar
  31. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theoret Biol 26: 61–81CrossRefGoogle Scholar
  32. Carstensen V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22: 61–79CrossRefGoogle Scholar
  33. Cecil T (2005) A numerical method for computing minimal surfaces in arbitrary dimension. J Comput Phys 206(2): 650–660MathSciNetzbMATHCrossRefGoogle Scholar
  34. Cerutti DS, Baker NA, McCammon JA (2007) Solvent reaction field potential inside an uncharged globular protein: A bridge between implicit and explicit solvent models?. J Chem Phys 127(15): 155101CrossRefGoogle Scholar
  35. Chang Q, Tai X, Xing L (2010) A compound algorithm of denoising using second-order and fourth-order partial differential equations. Numer Math Theory Methods Appl 2: 353–376MathSciNetGoogle Scholar
  36. Chen D, Chen Z, Chen C, Geng WH, Wei GW (2010) MIBPB: a software package for electrostatic analysis. J Comput Chem (in press)Google Scholar
  37. Chen D, Wei GW, Cong X, Wang G (2009) Computational methods for optical molecular imaging. Commun Numer Methods Eng 25: 1137–1161MathSciNetzbMATHCrossRefGoogle Scholar
  38. Chen J, Brooks CL III (2008) Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions. Phys Chem Chem Phys 10: 471–481CrossRefGoogle Scholar
  39. Chen L, Holst MJ, Xu J (2007) The finite element approximation of the nonlinear Poisson–Boltzmann equation. SIAM J Numer Anal 45(6): 2298–2320MathSciNetzbMATHCrossRefGoogle Scholar
  40. Chen T, Strain J (2008) Piecewise-polynomial discretization and Krylov-accelerated multigrid for elliptic interface problems. J Comput Phys 16: 7503–7542MathSciNetCrossRefGoogle Scholar
  41. Chen YG, Weeks JD (2006) Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions. Proc Natl Acad Sci USA 103(20): 7560–7565CrossRefGoogle Scholar
  42. Chen Z, Baker NA, Wei GW (2010) Differential geometry based solvation models I: Eulerian formulation. J Comput Phys 229: 8231–8258MathSciNetzbMATHCrossRefGoogle Scholar
  43. Chen Z, Wei GW (2010) Differential geometry based solvation models III: quantum formulation. J Comput Phys (submitted)Google Scholar
  44. Chen Z, Wei GW (2011) Differential geometry based solvation models IV: apolar formulation (in preparation, to be submitted)Google Scholar
  45. Cheng LT, Dzubiella J, McCammon AJ, Li B (2007) Application of the level-set method to the implicit solvation of nonpolar molecules. J Chem Phys 127(8)Google Scholar
  46. Cheng Y, Suen JK, Radi Z, Bond SD, Holst MJ, McCammon JA (2007) Continuum simulations of acetylcholine diffusion with reaction-determined boundaries in neuromuscular junction models. Biophys Chem 127(3): 129–139CrossRefGoogle Scholar
  47. Cheng Y, Suen JK, Zhang D, Bond SD, Zhang Y, Song Y, Baker NA, Bajaj CL, Holst MJ, McCammon JA (2007) Finite element analysis of the time-dependent Smoluchowski equation for acetylcholinesterase reaction rate calculations. Biophys J 92(10): 3397–3406CrossRefGoogle Scholar
  48. Chern IL, Liu J-G, Weng W-C (2003) Accurate evaluation of electrostatics for macromolecules in solution. Methods Appl Anal 10(2): 309–328MathSciNetzbMATHGoogle Scholar
  49. Chiba M, Fedorov DG, Kitaura K (2008) Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory. J Comput Chem 29: 2667–2676CrossRefGoogle Scholar
  50. Chopp DL (1993) Computing minimal surfaces via level set curvature flow. J Comput Phys 106(1): 77–91MathSciNetzbMATHCrossRefGoogle Scholar
  51. Chorny I, Dill KA, Jacobson MP (2005) Surfaces affect ion pairing. J Phys Chem B 109(50): 24056–24060CrossRefGoogle Scholar
  52. Chu VB, Bai Y, Lipfert J, Herschlag D, Doniach S (2007) Evaluation of ion binding to DNA duplexes using a size-modified Poisson–Boltzmann theory. Biophys J 93(9): 3202–3209CrossRefGoogle Scholar
  53. Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16(5): 548–558CrossRefGoogle Scholar
  54. Corey RB, Pauling L (1953) Molecular models of amino acids, peptides and proteins. Rev Sci Instr 24: 621–627CrossRefGoogle Scholar
  55. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255: 327–335CrossRefGoogle Scholar
  56. Crowley PB, Golovin A (2005) Cation–pi interactions in protein–protein interfaces. Proteins Struct Funct Bioinform 59(2): 231–239CrossRefGoogle Scholar
  57. David L, Luo R, Gilson MK (2000) Comparison of generalized Born and Poisson models: energetics and dynamics of HIV protease. J Comput Chem 21(4): 295–309CrossRefGoogle Scholar
  58. Davis ME, Madura JD, Sines J, Luty BA, Allison SA, McCammon JA (1991) Diffusion-controlled enzymatic reactions. Methods Enzymol 202: 473–497CrossRefGoogle Scholar
  59. Davis ME, McCammon JA (1990) Electrostatics in biomolecular structure and dynamics. Chem Rev 94: 509–521CrossRefGoogle Scholar
  60. De Rienzo F, Gabdoulline RR, Menziani MC, De Benedetti PG, Wade RC (2001) Electrostatic analysis and Brownian dynamics simulation of the association of plastocyanin and cytochrome F. Biophys J 81(6): 3090–3104CrossRefGoogle Scholar
  61. Dietrich C, Scheidegger CE, Schreiner J, Comba JLD, Nedel LP, Silva CT (2009) Edge transformations for improving mesh quality of marching cubes. IEEE Trans Vis Comput Graph 15(1): 150–159CrossRefGoogle Scholar
  62. Dominy BN, Brooks CL III (1999) Development of a generalized Born model parameterization for proteins and nucleic acids. J Phys Chem B 103(18): 3765–3773CrossRefGoogle Scholar
  63. Dong F, Olsen B, Baker NA (2008) Computational methods for biomolecular electrostatics. Methods Cell Biol 84: 843–870CrossRefGoogle Scholar
  64. Dong F, Vijaykumar M, Zhou HX (2003) Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of barnase and barstar. Biophys J 85(1): 49–60CrossRefGoogle Scholar
  65. Dong F, Wagoner JA, Baker NA (2008) Assessing the performance of implicit solvation models at a nucleic acid surface. Phys Chem Chem Phys 10: 4889–4902CrossRefGoogle Scholar
  66. Dong F, Zhou HX (2006) Electrostatic contribution to the binding stability of protein–protein complexes. Proteins 65(1): 87–102CrossRefGoogle Scholar
  67. Dragan AI, Read CM, Makeyeva EN, Milgotina EI, Churchill ME, Crane-Robinson C, Privalov PL (2004) DNA binding and bending by HMG boxes: energetic determinants of specificity. J Mol Biol 343(2): 371–393CrossRefGoogle Scholar
  68. Dzubiella J, Swanson JMJ, McCammon JA (2006) Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Phys Rev Lett 96: 087802CrossRefGoogle Scholar
  69. Dzubiella J, Swanson JMJ, McCammon JA (2006) Coupling nonpolar and polar solvation free energies in implicit solvent models. J Chem Phys 124: 084905CrossRefGoogle Scholar
  70. Edinger SR, Cortis C, Shenkin PS, Friesner RA (1997) Solvation free energies of peptides: comparison of approximate continuum solvation models with accurate solution of the Poisson–Boltzmann equation. J Phys Chem B 101(7): 1190–1197CrossRefGoogle Scholar
  71. Elcock AH, Gabdoulline RR, Wade RC, McCammon JA (1999) Computer simulation of protein–protein association kinetics: acetylcholinesterase-fasciculin. J Mol Biol 291(1): 149–162CrossRefGoogle Scholar
  72. Fedkiw RP, Aslam T, Merriman B, Osher S (1999) A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comput Phys 152: 457–492MathSciNetzbMATHCrossRefGoogle Scholar
  73. Fedorov MV, Goodman JM, Schumm S (2009) To switch or not to switch: the effects of potassium and sodium ions on α-poly-l-glutamate conformations in aqueous solutions. J Am Chem Soc 131: 10854–10856CrossRefGoogle Scholar
  74. Fedorov MV, Kornyshev AA (2007) Unravelling the solvent response to neutral and charged solutes. Mol Phys 105(1): 1–16CrossRefGoogle Scholar
  75. Feig M, Brooks CL III (2004) Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr Opin Struct Biol 14: 217–224CrossRefGoogle Scholar
  76. Feng X, Prohl A (2004) Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math Comput 73: 541–567MathSciNetzbMATHGoogle Scholar
  77. Fixman M (1979) The Poisson–Boltzmann equation and its application to polyelectrolytes. J Chem Phys 70(11): 4995–5005CrossRefGoogle Scholar
  78. Fogolari F, Brigo A, Molinari H (2002) The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recogn 15(6): 377–392CrossRefGoogle Scholar
  79. Forsman J (2004) A simple correlation-corrected Poisson–Boltzmann theory. J Phys Chem B 108(26): 9236–9245CrossRefGoogle Scholar
  80. Fries PH, Patey GN (1985) The solution of the hypernetted-chain approximation for fluids of nonspherical particles. a general method with application to dipolar hard spheres. J Chem Phys 82: 429–440CrossRefGoogle Scholar
  81. Gabdoulline RR, Wade RC (1998) Brownian dynamics simulation of protein–protein diffusional encounter. Methods a Companion to Methods in Enzymology 14(3): 329–341CrossRefGoogle Scholar
  82. Gallicchio E, Kubo MM, Levy RM (2000) Enthalpy-entropy and cavity decomposition of alkane hydration free energies: Numerical results and implications for theories of hydrophobic solvation. J Phys Chem B 104(26): 6271–6285CrossRefGoogle Scholar
  83. Gallicchio E, Levy RM (2004) AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J Comput Chem 25(4): 479–499CrossRefGoogle Scholar
  84. Gallicchio E, Zhang LY, Levy RM (2002) The SGB/NP hydration free energy model based on the surface generalized Born solvent reaction field and novel nonpolar hydration free energy estimators. J Comput Chem 23(5): 517–529CrossRefGoogle Scholar
  85. Geng W, Yu S, Wei GW (2007) Treatment of charge singularities in implicit solvent models. J Chem Phys 127: 114106CrossRefGoogle Scholar
  86. Geng WH, Wei GW (2010) Multiscale molecular dynamics via the matched interface and boundary (MIB) method. J Comput Phys (in press)Google Scholar
  87. Georgescu RE, Alexov EG, Gunner MR (2002) Combining conformational flexibility and continuum electrostatics for calculating pKas in proteins. Biophys J 83(4): 1731–1748CrossRefGoogle Scholar
  88. Gilboa G, Sochen N, Zeevi YY (2004) Image sharpening by flows based on triple well potentials. J Math Imaging Vis 20: 121–131MathSciNetCrossRefGoogle Scholar
  89. Gilson MK, Davis ME, Luty BA, McCammon JA (1993) Computation of electrostatic forces on solvated molecules using the Poisson–Boltzmann equation. J Phys Chem 97(14): 3591–3600CrossRefGoogle Scholar
  90. Gomes J, Faugeras OD (2001) Using the vector distance functions to evolve manifolds of arbitrary codimension. Lect Notes Comput Sci 2106: 1–13CrossRefGoogle Scholar
  91. Grant JA, Pickup BT, Nicholls A (2001) A smooth permittivity function for Poisson–Boltzmann solvation methods. J Comput Chem 22(6): 608–640CrossRefGoogle Scholar
  92. Grant JA, Pickup BT, Sykes MT, Kitchen CA, Nicholls A (2007) The Gaussian Generalized Born model: application to small molecules. Phys Chem Chem Phys 9: 4913–4922CrossRefGoogle Scholar
  93. Greer JB, Bertozzi AL (2004) H-1 solutions of a class of fourth order nonlinear equations for image processing. Discret Contin Dyn Syst 10: 349–366MathSciNetzbMATHGoogle Scholar
  94. Greer JB, Bertozzi AL (2004) Traveling wave solutions of fourth order pdes for image processing. SIAM J Math Anal 36: 38–68MathSciNetzbMATHCrossRefGoogle Scholar
  95. Grochowski P, Trylska J (2007) Continuum molecular electrostatics, salt effects and counterion binding. A review of the Poisson–Boltzmann theory and its modifications. Biopolymers 89(2): 93–113CrossRefGoogle Scholar
  96. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung Teil C 28: 693–703Google Scholar
  97. Holm C, Kekicheff P, Podgornik R (2001) Electrostatic effects in soft matter and biophysics. NATO science series. Kluwer, BostonGoogle Scholar
  98. Holst MJ (1993) Multilevel methods for the Poisson–Boltzmann equation. University of Illinois at Urbana/Champaign, Numerical Computing Group, Urbana/ChampaignGoogle Scholar
  99. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268(5214): 1144–1149CrossRefGoogle Scholar
  100. Hori T, Takahashi H, Nakano M, Nitta T, Yang W (2006) A qm/ mm study combined with the theory of energy representation: Solvation free energies for anti/syn acetic acids in aqueous solution. Chem Phys Lett 419(1–3): 240–244CrossRefGoogle Scholar
  101. Huang DM, Geissler PL, Chandler D (2001) Scaling of hydrophobic solvation free energies. J Phys Chemi B 105(28): 6704–6709CrossRefGoogle Scholar
  102. Husowitz B, Talanquer V (2007) Solvent density inhomogeneities and solvation free energies in supercritical diatomic fluids: a density functional approach. J Chem Phys 126(5): 054508CrossRefGoogle Scholar
  103. Im W, Beglov D, Roux B (1998) Continuum solvation model: electrostatic forces from numerical solutions to the Poisson–Boltzmann equation. Comput Phys Commun 111(1–3): 59–75zbMATHCrossRefGoogle Scholar
  104. Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125(054103)Google Scholar
  105. Iwamoto M, Liu F, Ou-Yang ZC (2006) Shape and stability of two-dimensional lipid domains with dipole–dipole interactions. J Chem Phys 125: 224701CrossRefGoogle Scholar
  106. Jackson RM, Sternberg MJ (1995) A continuum model for protein–protein interactions: application to the docking problem. J Mol Biol 250(2): 258–275CrossRefGoogle Scholar
  107. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. am1-bcc model: I. Method. J Comput Chem 21(2): 132–146CrossRefGoogle Scholar
  108. Jayaram B, Sprous D, Beveridge DL (1998) Solvation free energy of biomacromolecules: parameters for a modified generalized Born model consistent with the AMBER force field. J Phys Chem B 102(47): 9571–9576CrossRefGoogle Scholar
  109. Jinnouchi R, Anderson AB (2008) Electronic structure calculations of liquid–solid interfaces: combination of density functional theory and modified Poisson–Boltzmann theory. Phys Rev B 77(245417)Google Scholar
  110. Kamerlin SCL, Haranczyk M, Warshel A (2009) Progress in ab initio qm/ mm free-energy simulations of electrostatic energies in proteins: Accelerated qm/ mm studies of pk(a), redox reactions and solvation free energies. J Phys Chem B 113: 1253–1272CrossRefGoogle Scholar
  111. Kirkwood JG (1934) Theory of solution of molecules containing widely separated charges with special application to zwitterions. J Comput Phys 7: 351–361Google Scholar
  112. Koehl P (2006) Electrostatics calculations: latest methodological advances. Curr Opin Struct Biol 16(2): 142–151CrossRefGoogle Scholar
  113. Kuhn LA, Siani MA, Pique ME, Fisher CL, Getzoff ED, Tainer JA (1992) The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures. J Mol Biol 228(1): 13–22CrossRefGoogle Scholar
  114. Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160: 705–719MathSciNetzbMATHCrossRefGoogle Scholar
  115. Lamm G (2003) The Poisson–Boltzmann equation. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry.. Wiley, Hoboken, pp 147–366CrossRefGoogle Scholar
  116. Lebard DN, Matyushov DV (2008) Redox entropy of plastocyanin: developing a microscopic view of mesoscopic polar solvation. J Chem Phys 128(15): 155106CrossRefGoogle Scholar
  117. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55(3): 379–400CrossRefGoogle Scholar
  118. Lee MS, Salsbury JFRm, Olson MA (2004) An efficient hybrid explicit/implicit solvent method for biomolecular simulations. J Comput Chem 25(16): 1967–1978CrossRefGoogle Scholar
  119. Lee TS, York DM, Yang W (1996) Linear-scaling semiempirical quantum calculations for macromolecules. J Chem Phys 105(7): 2744–2750CrossRefGoogle Scholar
  120. LeVeque RJ, Li ZL (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31: 1019–1044MathSciNetzbMATHCrossRefGoogle Scholar
  121. Levy RM, Zhang LY, Gallicchio E, Felts AK (2003) On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute–solvent interaction energy. J Am Chem Soc 125(31): 9523–9530CrossRefGoogle Scholar
  122. Li H, Robertson AD, Jensen JH (2004) The determinants of carboxyl pKa values in turkey ovomucoid third domain. Proteins 55(3): 689–704CrossRefGoogle Scholar
  123. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pka values. Proteins 61(4): 704–721CrossRefGoogle Scholar
  124. Li J, Fisher CL, Chen JL, Bashford D, Noodleman L (1996) Calculation of redox potentials and pKa values of hydrated transition metal cations by a combined density functional and continuum dielectric theory. Inorg Chem 35(16): 4694–4702CrossRefGoogle Scholar
  125. Li Y, Santosa F (1996) A computational algorithm for minimizing total variation in image restoration. IEEE Trans Image Process 5(6): 987–995CrossRefGoogle Scholar
  126. Li ZL, Ito K (2001) Maximum principle preserving schemes for interface problems with discontinuous coefficients. SIAM J Sci Comput 23: 339–361MathSciNetzbMATHCrossRefGoogle Scholar
  127. Licata VJ, Allewell NM (1997) Functionally linked hydration changes in Escherichia coli aspartate transcarbamylase and its catalytic subunit. Biochemistry 36(33): 10161–10167CrossRefGoogle Scholar
  128. Liu XD, Fedkiw RP, Kang M (2000) A boundary condition capturing method for Poisson’s equation on irregular domains. J Comput Phys 160: 151–178MathSciNetzbMATHCrossRefGoogle Scholar
  129. Livesay DR, Jambeck P, Rojnuckarin A, Subramaniam S (2003) Conservation of electrostatic properties within enzyme families and superfamilies. Biochemistry 42(12): 3464–3473CrossRefGoogle Scholar
  130. Livingstone JR, Spolar RS, Record MT Jr (1991) Contribution to the thermodynamics of protein folding from the reduction in water-accessible nonpolar surface area. Biochemistry 30(17): 4237–4244CrossRefGoogle Scholar
  131. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface reconstruction algorithm. Comput Graph 21: 163–169CrossRefGoogle Scholar
  132. Lu Q, Luo R (2003) A Poisson–Boltzmann dynamics method with nonperiodic boundary condition. J Chem Phys 119(21): 11035–11047CrossRefGoogle Scholar
  133. Luo R, David L, Gilson MK (2002) Accelerated Poisson–Boltzmann calculations for static and dynamic systems. J Comput Chem 23(13): 1244–1253CrossRefGoogle Scholar
  134. Luty BA, Davis ME, McCammon JA (1992) Solving the finite-difference non-linear Poisson–Boltzmann equation. J Comput Chem 13: 1114–1118MathSciNetCrossRefGoogle Scholar
  135. Lysaker M, Lundervold A, Tai XC (2003) Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time. IEEE Trans Imaging Process 12: 1579–1590CrossRefGoogle Scholar
  136. MacDermaid CM, Kaminski GA (2007) Electrostatic polarization is crucial for reproducing pKa shifts of carboxylic residues in turkey ovomucoid third domain. J Phys Chem B 111(30): 9036–9044CrossRefGoogle Scholar
  137. MacKerell J, Bashford ADD, Bellot M, Dunbrack J, Evanseck RLJD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher I, Roux WEB, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18): 3586–3616CrossRefGoogle Scholar
  138. Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA, Ilin A, Antosiewicz J, Gilson MK, Bagheri B, Scott LR, McCammon JA (1995) Electrostatics and diffusion of molecules in solution—simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 91(1–3): 57–95CrossRefGoogle Scholar
  139. Marenich AV, Cramer CJ, Truhlar DG (2008) Perspective on foundations of solvation modeling: the electrostatic contribution to the free energy of solvation. J Chem Theory Comput 4(6): 877–887CrossRefGoogle Scholar
  140. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121(36): 8133–8143CrossRefGoogle Scholar
  141. Matousek WM, Ciani B, Fitch CA, Garcia-Moreno BE, Kammerer RA, Alexandrescu AT (2007) Electrostatic contributions to the stability of the GCN4 leucine zipper structure. J Mol Biol 374(1): 206–219CrossRefGoogle Scholar
  142. Mayo A (1984) The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J Numer Anal 21: 285–299MathSciNetzbMATHCrossRefGoogle Scholar
  143. Mikula K, Sevcovic D (2004) A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. Math Methods Appl Sci 27(13): 1545–1565MathSciNetzbMATHCrossRefGoogle Scholar
  144. Miller JL, Kollman PA (1996) Solvation free energies of the nucleic acid bases. J Phys Chem 100(20): 8587–8594CrossRefGoogle Scholar
  145. Mobley DL, Dill KA, Chodera JD (2008) Treating entropy and conformational changes in implicit solvent simulations of small molecules. J Phys Chemi B 112(3): 938–946CrossRefGoogle Scholar
  146. Mohan V, Davis ME, McCammon JA, Pettitt BM (1992) Continuum model calculations of solvation free energies: accurate evaluation of electrostatic contributions. J Phys Chem 96(15): 6428–6431CrossRefGoogle Scholar
  147. Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2007) Generalized Born model with a simple, robust molecular volume correction. J Chem Theory Comput 3(1): 159–169CrossRefGoogle Scholar
  148. Mu Y, Yang Y, Xu W (2007) Hybrid hamiltonian replica exchange molecular dynamics simulation method employing the Poisson–Boltzmann model. J Chem Phys 127(8)Google Scholar
  149. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5): 577–685MathSciNetzbMATHCrossRefGoogle Scholar
  150. Netz RR, Orland H (2000) Beyond Poisson–Boltzmann: fluctuation effects and correlation functions. Eur Phys J E 1(2–3): 203–214CrossRefGoogle Scholar
  151. Nicholls A, Mobley DL, Guthrie PJ, Chodera JD, Pande VS (2008) Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 51(4): 769–779CrossRefGoogle Scholar
  152. Nielsen JE, Andersen KV, Honig B, Hooft RWW, Klebe G, Vriend G, Wade RC (1999) Improving macromolecular electrostatics calculations. Protein Eng 12(8): 657–662CrossRefGoogle Scholar
  153. Nielsen JE, Vriend G (2001) Optimizing the hydrogen-bond network in Poisson–Boltzmann equation-based pK(a) calculations. Proteins 43(4): 403–412CrossRefGoogle Scholar
  154. Nina M, Im W, Roux B (1999) Optimized atomic radii for protein continuum electrostatics solvation forces. Biophys Chem 78(1–2): 89–96CrossRefGoogle Scholar
  155. Oevermann M, Klein R (2006) A cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. J Comput Phys 219: 749–769MathSciNetzbMATHCrossRefGoogle Scholar
  156. Okur A, Wickstrom L, Layten M, Geney R, Song K, Hornak V, Simmerling C (2006) Improved efficiency of replica exchange simulations through use of a hybrid explicit/implicit solvation model. J Chem Theory Comput 2(2): 420–433CrossRefGoogle Scholar
  157. Onufriev A, Bashford D, Case DA (2000) Modification of the generalized Born model suitable for macromolecules. J Phys Chem B 104(15): 3712–3720CrossRefGoogle Scholar
  158. Onufriev A, Case DA, Bashford D (2002) Effective Born radii in the generalized Born approximation: the importance of being perfect. J Comput Chem 23(14): 1297–1304CrossRefGoogle Scholar
  159. Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results.. J Comput Phys 169(2): 463–502MathSciNetzbMATHCrossRefGoogle Scholar
  160. Osher S, Rudin LI (1990) Feature-oriented image enhancement using shock filters. SIAM J Numer Anal 27(4): 919–940zbMATHCrossRefGoogle Scholar
  161. Osher S, Sethian JE (1988) Fronts propagating with curvature-dependent speed: algorithms based on the Hamilton–Jacobi formulation. J Comput Phys 79: 12–49MathSciNetzbMATHCrossRefGoogle Scholar
  162. Ou-Yang ZC, Helfrich W (1989) Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A 39: 5280–5288CrossRefGoogle Scholar
  163. Page CS, Bates PA (2006) Can MM-PBSA calculations predict the specificities of protein kinase inhibitors?. J Comput Chem 27(16): 1990–2007CrossRefGoogle Scholar
  164. Palmer DS, Frolov AI, Ratkova EL, Fedorov MV (2010) Towards a universal method for calculating hydration free energies: a 3D reference interaction site model with partial molar volume correction. J Phys Condens Matter 22(492101)Google Scholar
  165. Palmer DS, Sergiievskyi VP, Jensen F, Fedorov MV (2010) Accurate calculations of the hydration free energies of druglike molecules using the reference interaction site model. J Chem Phys 133(044104)Google Scholar
  166. Penfold R, Nordholm S, Jnsson B, Woodward CE (1990) A simple analysis of ion–ion correlation in polyelectrolyte solutions. J Chem Phys 92(3): 1915–1922CrossRefGoogle Scholar
  167. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3): 220–252MathSciNetzbMATHCrossRefGoogle Scholar
  168. Petrey D, Honig B (2003) GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. Methods Enzymol 374: 492–509CrossRefGoogle Scholar
  169. Pierotti RA (1976) A scaled particle theory of aqueous and nonaqeous solutions. Chem Rev 76(6): 717–726CrossRefGoogle Scholar
  170. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66: 27–85CrossRefGoogle Scholar
  171. Prabhu NV, Panda M, Yang QY, Sharp KA (2008) Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules. J Comput Chem 29: 1113–1130CrossRefGoogle Scholar
  172. Prabhu NV, Zhu P, Sharp KA (2004) Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson–Boltzmann method. J Comput Chem 25(16): 2049–2064CrossRefGoogle Scholar
  173. Quina FH, Alonso EO, Farah JPS (1995) Incorporation of nonionic solutes into aqueous micelles: a linear solvation free energy relationship analysis. J Phys Chem 99: 11708–11714CrossRefGoogle Scholar
  174. Ratkova EL, Chuev GN, Sergiievskyi VP, Fedorov MV (2010) An accurate prediction of hydration free energies by combination of molecular integral equations theory with structural descriptors. J Phys Chem B 114(37): 12068–12079CrossRefGoogle Scholar
  175. Reddy MR, Singh UC, Erion MD (2007) Ab initio quantum mechanics-based free energy perturbation method for calculating relative solvation free energies. J Comput Chem 28(2): 491–494CrossRefGoogle Scholar
  176. Richards FM (1977) Areas, volumes, packing, and protein structure. Annu Rev Biophys Bioeng 6(1): 151–176CrossRefGoogle Scholar
  177. Roux B, Simonson T (1999) Implicit solvent models. Biophys Chem 78(1–2): 1–20CrossRefGoogle Scholar
  178. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. In: Proceedings of the eleventh annual international conference of the Center for Nonlinear Studies on Experimental mathematics: computational issues in nonlinear science. Elsevier North-Holland, Inc., Amsterdam, pp 259–268Google Scholar
  179. Sanner MF, Olson AJ, Spehner JC (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38: 305–320CrossRefGoogle Scholar
  180. Sapiro G, Ringach DL (1996) Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans Image Process 5(11): 1582–1586CrossRefGoogle Scholar
  181. Sarti A, Malladi R, Sethian JA (2002) Subjective surfaces: a geometric model for boundary completion. Int J Comput Vis 46(3): 201–221zbMATHCrossRefGoogle Scholar
  182. Savelyev A, Papoian GA (2007) Inter-DNA electrostatics from explicit solvent molecular dynamics simulations. J Am Chem Soc 129(19): 6060–6061CrossRefGoogle Scholar
  183. Sbert C, Solé AF (2003) 3D curves reconstruction based on deformable models. J Math Imaging Vis 18(3): 211–223zbMATHCrossRefGoogle Scholar
  184. Schaefer M, Karplus M (1996) A comprehensive analytical treatment of continuum electrostatics. J Phys Chem 100(5): 1578–1599CrossRefGoogle Scholar
  185. Sept D, Elcock AH, McCammon JA (1999) Computer simulations of actin polymerization can explain the barbed-pointed end asymmetry. J Mol Biol 294(5): 1181–1189CrossRefGoogle Scholar
  186. Sept D, McCammon JA (2001) Thermodynamics and kinetics of actin filament nucleation. Biophys J 81(2): 667–674CrossRefGoogle Scholar
  187. Sethian JA (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169(2): 503–555MathSciNetzbMATHCrossRefGoogle Scholar
  188. Sham YY, Muegge I, Warshel A (1998) The effect of protein relaxation on charge–charge interactions and dielectric constants of proteins. Biophys J 74(4): 1744–1753CrossRefGoogle Scholar
  189. Sharp KA, Honig B (1990) Calculating total electrostatic energies with the nonlinear Poisson–Bottzmann equatlon. J Phys Chem 94: 7684–7692CrossRefGoogle Scholar
  190. Sharp KA, Honig B (1990) Electrostatic interactions in macromolecules—theory and applications. Annu Rev Biophys Biophys Chem 19: 301–332CrossRefGoogle Scholar
  191. Simonson T (2001) Macromolecular electrostatics: continuum models and their growing pains. Curr Opin Struct Biol 11(2): 243–252CrossRefGoogle Scholar
  192. Simonson T (2003) Electrostatics and dynamics of proteins. Rep Prog Phys 66(5): 737–787CrossRefGoogle Scholar
  193. Simonson T, Brunger AT (1994) Solvation free energies estimated from macroscopic continuum theory: an accuracy assessment. J Phys Chem 98(17): 4683–4694CrossRefGoogle Scholar
  194. Smereka P (2003) Semi-implicit level set methods for curvature and surface diffusion motion. J Sci Comput 19(1): 439–456MathSciNetzbMATHCrossRefGoogle Scholar
  195. Smereka P (2006) The numerical approximation of a delta function with application to level set methods. J Comput Phys 211(1): 77–90MathSciNetzbMATHCrossRefGoogle Scholar
  196. Sochen N, Kimmel R, Malladi R (1998) A general framework for low level vision. IEEE Trans Image Process 7(3): 310–318MathSciNetzbMATHCrossRefGoogle Scholar
  197. Song Y, Zhang Y, Bajaj CL, Baker NA (2004) Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. Biophys J 87(3): 1558–1566CrossRefGoogle Scholar
  198. Song Y, Zhang Y, Shen T, Bajaj CL, McCammon JA, Baker NA (2004) Finite element solution of the steady-state Smoluchowksi equation for rate constant calculations. Biophys J 86(4): 2017–2029CrossRefGoogle Scholar
  199. Spolar RS, Ha JH, Record MT Jr (1989) Hydrophobic effect in protein folding and other noncovalent processes involving proteins. Proc Natl Acad Sci USA 86(21): 8382–8385CrossRefGoogle Scholar
  200. Stillinger FH (1973) Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J Solut Chem 2: 141–158CrossRefGoogle Scholar
  201. Sun YH, Wu PR, Wei GW, Wang G (2006) Evolution operator based single-step method for image processing. Int J Biomed Imaging 83847: 1–27CrossRefGoogle Scholar
  202. Swanson JMJ, Henchman RH, McCammon JA (2004) Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J 86(1): 67–74CrossRefGoogle Scholar
  203. Swanson JMJ, Mongan J, McCammon JA (2005) Limitations of atom-centered dielectric functions in implicit solvent models. J Phys Chem B 109(31): 14769–14772CrossRefGoogle Scholar
  204. Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (cpcm) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1(1): 70–77CrossRefGoogle Scholar
  205. Tan C, Tan YH, Luo R (2007) Implicit nonpolar solvent models. J Phys Chem B 111(42): 12263–12274CrossRefGoogle Scholar
  206. Tan C, Yang L, Luo R (2006) How well does Poisson–Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis. J Phys Chem B 110(37): 18680–18687CrossRefGoogle Scholar
  207. Tan JJ, Chen WZ, Wang CX (2006) Investigating interactions between HIV-1 gp41 and inhibitors by molecular dynamics simulation and MM-PBSA/GBSA calculations. J Mol Struct Theochem 766(2–3): 77–82CrossRefGoogle Scholar
  208. Tan ZJ, Chen SJ (2005) Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. J Chem Phys 122: 044903CrossRefGoogle Scholar
  209. Tanaka M, Grosberg AY (2001) Giant charge inversion of a macroion due to multivalent counterions and monovalent coions: Molecular dynamics study. J Chem Phys 115(1): 567–574CrossRefGoogle Scholar
  210. Tang CL, Alexov E, Pyle AM, Honig B (2007) Calculation of pKas in RNA: on the structural origins and functional roles of protonated nucleotides. J Mol Biol 366(5): 1475–1496CrossRefGoogle Scholar
  211. Tawa GJ, Topol IA, Burt SK, Caldwell RA, Rashin AA (1998) Calculation of the aqueous solvation free energy of the proton. J Chem Phys 109(12): 4852–4863CrossRefGoogle Scholar
  212. Terekhova I, Romanova AO, Kumeev RS, Fedorov MV (2010) Selective Na+/K+ effects on the formation of α-cyclodextrin complexes with aromatic carboxylic acids: competition for the guest. J Phys Chem B 114(37): 12607–12613CrossRefGoogle Scholar
  213. Tjong H, Zhou HX (2007) GBr6NL: a generalized Born method for accurately reproducing solvation energy of the nonlinear Poisson–Boltzmann equation. J Chem Phys 126: 195102CrossRefGoogle Scholar
  214. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105: 2999–3093CrossRefGoogle Scholar
  215. Tsui V, Case DA (2000) Molecular dynamics simulations of nucleic acids with a generalized Born solvation model. J Am Chem Soc 122(11): 2489–2498CrossRefGoogle Scholar
  216. Tsui V, Case DA (2001) Calculations of the absolute free energies of binding between RNA and metal ions using molecular dynamics simulations and continuum electrostatics. J Phys Chem B 105(45): 11314–11325CrossRefGoogle Scholar
  217. Tully-Smith DM, Reiss H (1970) Further development of scaled particle theory of rigid sphere fluids. J Chem Phys 53(10): 4015–4025CrossRefGoogle Scholar
  218. Vitalis A, Baker NA, McCammon JA (2004) ISIM: a program for grand canonical Monte Carlo simulations of the ionic environment of biomolecules. Mol Simul 30(1): 45–61zbMATHCrossRefGoogle Scholar
  219. Vitalis A, Pappu RV (2009) ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions. J Comput Chem 30(5): 673–699CrossRefGoogle Scholar
  220. Wade RC, Gabdoulline RR, De Rienzo F (2001) Protein interaction property similarity analysis. Int J Quant Chem 83(3–4): 122–127CrossRefGoogle Scholar
  221. Wagoner JA, Baker NA (2006) Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proc Natl Acad Sci USA 103(22): 8331–8336CrossRefGoogle Scholar
  222. Wallquist A, Berne BJ (1995) Computer-simulation of hydrophobic hydration forces stacked plates at short-range. J Phys Chem 99: 2893–2899CrossRefGoogle Scholar
  223. Warshel A, Papazyan A (1998) Electrostatic effects in macromolecules: fundamental concepts and practical modeling. Curr Opin Struct Biol 8(2): 211–217CrossRefGoogle Scholar
  224. Warshel A, Sharma PK, Kato M, Parson WW (2006) Modeling electrostatic effects in proteins. Biochim Biophys Acta (BBA) Proteins Proteomics 1764(11): 1647–1676CrossRefGoogle Scholar
  225. Warwicker J, Watson HC (1982) Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol 157(4): 671–679CrossRefGoogle Scholar
  226. Weeks JD, Chandler D, Andersen HC (1971) Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys 54(12): 5237–5247CrossRefGoogle Scholar
  227. Wei GW (1999) Generalized Perona–Malik equation for image restoration. IEEE Signal Process Lett 6(7): 165–167CrossRefGoogle Scholar
  228. Wei GW (2010) Differential geometry based multiscale models. Bull Math Biol 72: 1562–1622MathSciNetzbMATHCrossRefGoogle Scholar
  229. Wei GW, Jia YQ (2002) Synchronization-based image edge detection. Europhys Lett 59(6): 814CrossRefGoogle Scholar
  230. Wei GW, Sun YH, Zhou YC, Feig M (2005) Molecular multiresolution surfaces, pp 1–11. arXiv:math-ph/0511001v1Google Scholar
  231. Weinzinger P, Hannongbua S, Wolschann P (2005) Molecular mechanics PBSA ligand binding energy and interaction of efavirenz derivatives with HIV-1 reverse transcriptase. J Enzyme Inhib Med Chem 20(2): 129–134CrossRefGoogle Scholar
  232. Willmore TJ (1997) Riemannian geometry. Oxford University Press, USAGoogle Scholar
  233. Wolfgang K (2002) Differential geometry: curves-surface-manifolds. American Mathematical Society, ProvidenceGoogle Scholar
  234. Xu G, Pan Q, Bajaj CL (2006) Discrete surface modeling using partial differential equations. Comput Aided Geom Des 23(2): 125–145MathSciNetzbMATHCrossRefGoogle Scholar
  235. Xu M, Zhou SL (2007) Existence and uniqueness of weak solutions for a fourth-order nonlinear parabolic equation. J Math Anal Appl 325: 636–654MathSciNetzbMATHCrossRefGoogle Scholar
  236. Yang AS, Gunner MR, Sampogna R, Sharp K, Honig B (1993) On the calculation of pK(a)s in proteins. Proteins Struct Funct Genet 15(3): 252–265CrossRefGoogle Scholar
  237. Yu S, Geng W, Wei GW (2007) Treatment of geometric singularities in implicit solvent models. J Chem Phys 126: 244108CrossRefGoogle Scholar
  238. Yu S, Wei GW (2007) Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities. J Comput Phys 227: 602–632MathSciNetzbMATHCrossRefGoogle Scholar
  239. Yu S, Zhou Y, Wei GW (2007) Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J Comput Phys 224(2): 729–756MathSciNetzbMATHCrossRefGoogle Scholar
  240. Zhang D, Suen J, Zhang Y, Radic Z, Taylor P, Holst M, Bajaj C, Baker NA, McCammon JA (2005) Tetrameric mouse acetylcholinesterase: continuum diffusion rate calculations by solving the steady-state Smoluchowski equation using finite element methods. Biophys J 88(3): 1659–1665CrossRefGoogle Scholar
  241. Zhang Y, Xu G, Bajaj C (2006) Quality meshing of implicit solvation models of biomolecular structures. Comput Aided Geom Des 23(6): 510–530MathSciNetzbMATHCrossRefGoogle Scholar
  242. Zhao S (2010) High order matched interface and boundary methods for the helmholtz equation in media with arbitrarily curved interfaces. J Comput Phys 229: 3155–3170MathSciNetzbMATHCrossRefGoogle Scholar
  243. Zhao S, Wei GW (2004) High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J Comput Phys 200(1): 60–103MathSciNetzbMATHCrossRefGoogle Scholar
  244. Zhou YC, Feig M, Wei GW (2008) Highly accurate biomolecular electrostatics in continuum dielectric environments. J Comput Chem 29: 87–97CrossRefGoogle Scholar
  245. Zhou YC, Wei GW (2006) On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method. J Comput Phys 219(1): 228–246MathSciNetzbMATHCrossRefGoogle Scholar
  246. Zhou YC, Zhao S, Feig M, Wei GW (2006) High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J Comput Phys 213(1): 1–30MathSciNetzbMATHCrossRefGoogle Scholar
  247. Zhou Z, Payne P, Vasquez M, Kuhn N, Levitt M (1996) Finite-difference solution of the Poisson–Boltzmann equation: complete elimination of self-energy. J Comput Chem 17: 1344–1351CrossRefGoogle Scholar
  248. Zhu J, Alexov E, Honig B (2005) Comparative study of generalized Born models: Born radii and peptide folding. J Phys Chem B 109(7): 3008–3022CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityLansingUSA
  2. 2.Pacific Northwest National LaboratoryRichlandUSA
  3. 3.Department of Electrical and Computer EngineeringMichigan State UniversityLansingUSA

Personalised recommendations