Journal of Mathematical Biology

, Volume 63, Issue 4, pp 637–662 | Cite as

An externally modulated, noise-driven switch for the regulation of SPI1 in Salmonella enterica serovar Typhimurium

  • Marc Bailly-BechetEmail author
  • Arndt Benecke
  • Wolf Dietrich Hardt
  • Valentina Lanza
  • Alexander Sturm
  • Riccardo Zecchina


In this work we consider the regulation system present on the SPI1 pathogenicity island of Salmonella enterica serovar Typhimurium. It is well-known that HilA is the central regulator in the overall scheme of SPI1 regulation and directly binds to virulence operons and activates their expression. The regulation of the expression of HilA is via a complex feed-forward loop involving three transcriptional activators: HilC, HilD and RtsA, and the negative regulator HilE. Our aim is to model this regulation network and study its dynamical behavior. We show that this regulatory system can display a bistable behavior relevant to the biology of Salmonella, and that noise can be a driving force in this system.


Salmonella Pathogenicity Regulatory network Bistability Noise 

Mathematics Subject Classification (2000)

92B05 37G10 34D20 34F05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann M, Stecher B, Freed NE, Songhet P, Hardt WD, Doebeli M (2008) Self-destructive cooperation mediated by phenotypic noise. Nature 454(7207):987–990. doi: 10.1038/nature07067; Google Scholar
  2. Altier C (2005) Genetic and environmental control of salmonella invasion. J Microbiol 43(Spec No): 85–92Google Scholar
  3. Bajaj V, Hwang C, Lee CA (1995) HilA is a novel ompr/toxr family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol 18(4): 715–727CrossRefGoogle Scholar
  4. Baxter MA, Fahlen TF, Wilson RL, Jones BD (2003) HilE interacts with HilD and negatively regulates hila transcription and expression of the Salmonella enterica serovar Typhimurium invasive phenotype. Infect Immun 71(3): 1295–1305CrossRefGoogle Scholar
  5. Bustamante VH, Martnez LC, Santana FJ, Knodler LA, Steele-Mortimer O, Puente JL (2008) HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. Proc Natl Acad Sci USA 105(38):14591–14596.doi: 10.1073/pnas.0801205105; url:
  6. Chan K, Baker S, Kim CC, Detweiler CS, Dougan G, Falkow S (2003) Genomic comparison of Salmonella enterica serovars and salmonella bongori by use of an S. enterica serovar Typhimurium DNA microarray. J Bacteriol 185(2): 553–563CrossRefGoogle Scholar
  7. Chan K, Kim CC, Falkow S (2005) Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice. Infect Immun 73(9):5438–5449. doi: 10.1128/IAI.73.9.5438-5449.2005;
  8. Cohen H (1993) A course in computational algebraic number theory. Springer, New YorkzbMATHGoogle Scholar
  9. Detweiler CS, Monack DM, Brodsky IE, Mathew H, Falkow S (2003) VIRK, SOMA and RCSC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol Microbiol 48(2): 385–400CrossRefGoogle Scholar
  10. Ellermeier C, Ellermeier J, Slauch J (2005) HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator HilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 57(3): 691–705CrossRefGoogle Scholar
  11. Ellermeier J, Slauch J (2007) Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10(1): 24–29CrossRefGoogle Scholar
  12. Elowitz M, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767): 335–338CrossRefGoogle Scholar
  13. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97: 611–631MathSciNetzbMATHCrossRefGoogle Scholar
  14. Ganesh AB, Rajasingh H, Mande SS (2009) Mathematical modeling of regulation of type iii secretion system in Salmonella enterica serovar Typhimurium by SirA. In Silico Biol 9(1–2): S57–S72Google Scholar
  15. Gardiner C (1983) Handbook of stochastic methods. Springer, New YorkzbMATHGoogle Scholar
  16. Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25): 2340–2361CrossRefGoogle Scholar
  17. Gillespie D (2000) The chemical Langevin equation. J Chem Phys 113(1): 297–306CrossRefGoogle Scholar
  18. Hasty J, Isaacs F, Dolnik M, McMillen D, Collins J (2001) Designer gene networks: towards fundamental cellular control. Chaos: An Interdiscip J Nonlinear Sci 11: 207–220zbMATHCrossRefGoogle Scholar
  19. Hasty J, Pradines J, Dolnik M, Collins J (2000) Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci 97(5): 2075–2080CrossRefGoogle Scholar
  20. Hautefort I, Proena MJ, Hinton JCD (2003) Single-copy green fluorescent protein gene fusions allow accurate measurement of salmonella gene expression in vitro and during infection of mammalian cells. Appl Environ Microbiol 69(12): 7480–7491CrossRefGoogle Scholar
  21. Jones BD (2005) Salmonella invasion gene regulation: a story of environmental awareness. J Microbiol 43(Spec No): 110–117Google Scholar
  22. Kloeden P (1992) Platen E numerical solution of stochastic differential equations. Springer, BerlinGoogle Scholar
  23. Maheshri N, O’Shea E (2007) Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu Rev Biophys Biomol Struct 36: 413–434CrossRefGoogle Scholar
  24. Prouty AM, Brodsky IE, Falkow S, Gunn JS (2004) Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiology 150(Pt 4): 775–783CrossRefGoogle Scholar
  25. Schlumberger MC, Mller AJ, Ehrbar K, Winnen B, Duss I, Stecher B, Hardt WD (2005) Real-time imaging of type III secretion: Salmonella sipa injection into host cells. Proc Natl Acad Sci USA 102(35): 12548–12553. doi: 10.1073/pnas.0503407102;
  26. Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2): 461–464zbMATHCrossRefGoogle Scholar
  27. Sontag E (2005) Molecular systems biology and control. Euro J Contr 11(5): 396–435MathSciNetCrossRefGoogle Scholar
  28. Temme K, Salis H, Tullman-Ercek D, Levskaya A, Hong SH, Voigt CA (2008) Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within salmonella pathogenicity island 1. J Mol Biol 377(1):47–61. doi: 10.1016/j.jmb.2007.12.044; Google Scholar
  29. Toulouse T, Ao P, Shmulevich I, Kauffman S (2005) Noise in a small genetic circuit that undergoes bifurcation. Complexity 11(1): 45–51MathSciNetCrossRefGoogle Scholar
  30. Tyson J, Othmer H (1978) The dynamics of feedback control circuits in biochemical pathways. Prog Theoret Biol 5: 1–62Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marc Bailly-Bechet
    • 1
    Email author
  • Arndt Benecke
    • 2
  • Wolf Dietrich Hardt
    • 3
  • Valentina Lanza
    • 4
  • Alexander Sturm
    • 3
  • Riccardo Zecchina
    • 5
  1. 1.CNRS UMR 5558, Laboratoire de Biométrie et Biologie EvolutiveUniversité Lyon 1VilleurbanneFrance
  2. 2.CNRS USR 3078Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance
  3. 3.Institute of MicrobiologyETH ZürichZürichSwitzerland
  4. 4.Department of PhysicsPolitecnico di TorinoTorinoItaly
  5. 5.Department of Physics, Politecnico di TorinoHuman Genetics Foundation TorinoTorinoItaly

Personalised recommendations