Journal of Mathematical Biology

, Volume 63, Issue 3, pp 399–431 | Cite as

Selective sweeps for recessive alleles and for other modes of dominance

  • G. Ewing
  • J. Hermisson
  • P. Pfaffelhuber
  • J. Rudolf
Article

Abstract

A selective sweep describes the reduction of linked genetic variation due to strong positive selection. If s is the fitness advantage of a homozygote for the beneficial allele and h its dominance coefficient, it is usually assumed that h = 1/2, i.e. the beneficial allele is co-dominant. We complement existing theory for selective sweeps by assuming that h is any value in [0, 1]. We show that genetic diversity patterns under selective sweeps with strength s and dominance 0 < h < 1 are similar to co-dominant sweeps with selection strength 2hs. Moreover, we focus on the case h = 0 of a completely recessive beneficial allele. We find that the length of the sweep, i.e. the time from occurrence until fixation of the beneficial allele, is of the order of \({\sqrt{N/s}}\) generations, if N is the population size. Simulations as well as our results show that genetic diversity patterns in the recessive case h = 0 greatly differ from all other cases.

Keywords

Genetic hitchhiking Selective sweep Beneficial mutation Recessive allele Genealogy 

Mathematics Subject Classification (2000)

92D15 60J70 60K35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton N (1998) The effect of hitch-hiking on neutral genealogies. Genet Res 72: 123–133CrossRefGoogle Scholar
  2. Barton N, Etheridge A, Sturm A (2004) Coalescence in a random background. Ann Appl Probab 14(2): 754–785MathSciNetMATHCrossRefGoogle Scholar
  3. Bürger R, Ewens W (1995) Fixation probabilities of additive alleles in diploid populations. J Math Biol 33: 557–575CrossRefGoogle Scholar
  4. Cavatorta J, Savage A, Yeam I, Gray S, Jahn M (2008) Positive Darwinian selection at single amino acid sites conferring plant virus resistance. J Mol Evol 67: 551–559CrossRefGoogle Scholar
  5. Charlesworth B (1998) Adaptive evolution: the struggle for dominance. Curr Biol 8(14): R502–R504CrossRefGoogle Scholar
  6. Dawson D, Gorostiza L, Wakolbinger A (2001) Occupation time fluctuations in branching systems. J Theor Probab 14: 729–796MathSciNetMATHCrossRefGoogle Scholar
  7. Durrett R, Schweinsberg J (2004) Approximating selective sweeps. Theor Popul Biol 66: 129–138MATHCrossRefGoogle Scholar
  8. Etheridge A, Pfaffelhuber P, Wakolbinger A (2006) An approximate sampling formula under genetic hitchhiking. Ann Appl Probab 16: 685–729MathSciNetMATHCrossRefGoogle Scholar
  9. Ewens W (2004) Mathematical Population Genetics, I. Theoretical introduction. 2nd edn. Springer, New YorkMATHGoogle Scholar
  10. Ewing G, Hermisson J (2010) MSMS: a coalescent simulation program including recombination, demographic structure, and selection at a single locus. Bioinformatics 26(16): 2064–2065CrossRefGoogle Scholar
  11. Garcia G, Flores A, Fernandez-Salas I, Saavedra-Rodriguez K, Reyes-Solis G, Lozano-Fuentes S, Guillermo Bond J, Casas-Martinez M, Ramsey J, Garcia-Rejon J, Dominguez-Galera M, Ranson H, Hemingway J, Eisen L, Black W IV (2009) Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in Mexico. PLoS Negl Trop Dis 3: e531CrossRefGoogle Scholar
  12. Hamblin M, Di Rienzo A (2000) Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet 66: 1669–1679MATHCrossRefGoogle Scholar
  13. Hermisson J, Pennings P (2005) Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169(4): 2335–2352CrossRefGoogle Scholar
  14. Hermisson J, Pfaffelhuber P (2008) The pattern of genetic hitchhiking under recurrent mutation. Electron J Probab 13(68): 2069–2106MathSciNetMATHGoogle Scholar
  15. Jensen J, Kim Y, Bauer DuMont V, Aquadro C, Bustamante C (2005) Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics 170: 1401–1410CrossRefGoogle Scholar
  16. Kaplan N, Hudson R, Langley C (1989) The ‘Hitchhiking effect’ revisited. Genetics 123: 887–899Google Scholar
  17. Karlin S, Taylor H (1981) A Second Course in Stochastic Processes. Academic Press, LondonMATHGoogle Scholar
  18. Kim Y, Stephan W (2002) Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 160: 765–777Google Scholar
  19. Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47: 713–719Google Scholar
  20. Leocard S, Pardoux E (2010) Evolution of the ancestral recombination graph along the genome in case of selective sweep. J Math Biol 61(6): 819–841MathSciNetMATHCrossRefGoogle Scholar
  21. Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favorable gene. Genet Res 23: 23–35CrossRefGoogle Scholar
  22. McVean G (2007) The structure of linkage disequilibrium around a selective sweep. Genetics 175: 1395–1406CrossRefGoogle Scholar
  23. Nielsen R, Williamson S, Kim Y, Hubisz M, Clark A, Bustamante C (2005) Genomic scans for selective sweeps using SNP data. Genome Res 15: 1566–1575CrossRefGoogle Scholar
  24. Ordon F, Friedt W, Scheurer K, Pellio B, Werner K, Neuhaus G, Huth W, Habekuss A, Graner A (2004) Molecular markers in breeding for virus resistance in barley. J Appl Genet 45: 145–159Google Scholar
  25. Pennings P, Hermisson J (2006a) Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration. Mol Biol Evol 23(5): 1076–1084CrossRefGoogle Scholar
  26. Pennings P, Hermisson J (2006b) Soft sweeps III—the signature of positive selection from recurrent mutation. PLoS Genet 2: e186CrossRefGoogle Scholar
  27. Pfaffelhuber P, Studeny A (2007) Approximating genealogies for partially linked neutral loci under a selective sweep. J Math Biol 55: 299–330MathSciNetMATHCrossRefGoogle Scholar
  28. Stephan W, Wiehe T, Lenz M (1992) The effect of strongly selected substitutions on neutral polymorphism: analytical results based on diffusion theory. Theor Popul Biol 41: 237–254MATHCrossRefGoogle Scholar
  29. Stephan W, Song Y, Langley C (2006) The hitchhiking effect on linkage disequilibrium between linked neutral loci. Genetics 172: 2647–2663CrossRefGoogle Scholar
  30. Tajima F (1983) Evolutionary relationship of DN sequences in finite populations. Genetics 105: 437–460Google Scholar
  31. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595Google Scholar
  32. Teshima K, Przeworski M (2006) Directional positive selection on an allele of arbitrary dominance. Genetics 172: 713–718CrossRefGoogle Scholar
  33. Teshima K, Coop G, Przeworski M (2006) How reliable are empirical genomic scans for selective sweeps?. Genome Res 16: 702–712CrossRefGoogle Scholar
  34. van Herwaarden O, van der Wal N (2002) Extinction time and age of an allele in a large finite population. Theor Popul Biol 61: 311–318MATHCrossRefGoogle Scholar
  35. Watterson G (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7: 256–276MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • G. Ewing
    • 1
  • J. Hermisson
    • 1
  • P. Pfaffelhuber
    • 2
  • J. Rudolf
    • 2
  1. 1.University of ViennaViennaAustria
  2. 2.Albert-Ludwigs University of FreiburgFreiburgGermany

Personalised recommendations