Advertisement

Journal of Mathematical Biology

, Volume 63, Issue 1, pp 141–171 | Cite as

Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation

  • Vivi Andasari
  • Alf Gerisch
  • Georgios Lolas
  • Andrew P. South
  • Mark A. J. Chaplain
Article

Abstract

The ability of cancer cells to break out of tissue compartments and invade locally gives solid tumours a defining deadly characteristic. One of the first steps of invasion is the remodelling of the surrounding tissue or extracellular matrix (ECM) and a major part of this process is the over-expression of proteolytic enzymes, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), by the cancer cells to break down ECM proteins. Degradation of the matrix enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body, a process known as metastasis. In this paper we undertake an analysis of a mathematical model of cancer cell invasion of tissue, or ECM, which focuses on the role of the urokinase plasminogen activation system. The model consists of a system of five reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, uPA, uPA inhibitors, plasmin and the host tissue. Cancer cells react chemotactically and haptotactically to the spatio-temporal effects of the uPA system. The results obtained from computational simulations carried out on the model equations produce dynamic heterogeneous spatio-temporal solutions and using linear stability analysis we show that this is caused by a taxis-driven instability of a spatially homogeneous steady-state. Finally we consider the biological implications of the model results, draw parallels with clinical samples and laboratory based models of cancer cell invasion using three-dimensional invasion assay, and go on to discuss future development of the model.

Keywords

Cancer invasion uPA system Haptotaxis Spatio-temporal heterogeneity Organotypic culture Invasion index 

Mathematics Subject Classification (2000)

92C17 92-08 92C15 35K57 65M20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam JA, Bellomo N (1996) A survey of models for tumour-immune system dynamics. Birkhäuser, BostonCrossRefGoogle Scholar
  2. Aida M, Tsujikawa T, Efendiev M, Yagi A, Mimura M (2006) Lower estimates of the attractor dimension for a chemotaxis growth system. J Lond Math Soc 74: 453–474MathSciNetzbMATHCrossRefGoogle Scholar
  3. Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. IMA Math Med Biol 22(2): 163–186. doi: 10.1093/imammb/dqi005 zbMATHCrossRefGoogle Scholar
  4. Anderson ARA, Chaplain MAJ, Newman EL, Steele RJC, Thompson AM (2000) Mathematical modelling of tumour invasion and metastasis. Comput Math Method M 2(2): 129–154zbMATHGoogle Scholar
  5. Anderson ARA, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127: 905–915CrossRefGoogle Scholar
  6. Anderson ARA, Rejniak KA, Gerlee P, Quaranta V (2009) Microenvironment driven invasion: a multiscale multimodel investigation. J Math Biol 58: 579–624MathSciNetCrossRefGoogle Scholar
  7. Andreasen PA, Kjøller L, Christensen L, Duffy MJ (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72(1): 1–22CrossRefGoogle Scholar
  8. Andreasen PA, Egelund R, Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57(1): 25–40. doi: 10.1007/s000180050497 CrossRefGoogle Scholar
  9. Araujo RP, McElwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. B Math Biol 66(5): 1039–1091. doi: 10.1016/j.bulm.2003.11.002 MathSciNetCrossRefGoogle Scholar
  10. Armstrong NJ, Painter KJ, Sherratt JA (2006) A continuum approach to modelling cell–cell adhesion. J Theor Biol 243(1): 98–113. doi: 10.1016/j.jtbi.2006.05.030 MathSciNetCrossRefGoogle Scholar
  11. Bellomo N, Bellouquid A, De Angelis A (2003) The modelling of the immune competition by generalized kinetic (Boltzmann) models: Review and research perspectives. Math Comput Model 37: 1131–1142MathSciNetCrossRefGoogle Scholar
  12. Bellomo N, Chaplain MAJ, De Angelis E (2008) Selected topics in cancer modeling: genesis, evolution, immune competition, and therapy (Modeling and simulation in science, engineering and technology). Birkhäuser, BostonzbMATHGoogle Scholar
  13. Breslow A (1970) Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 172(5): 902–908CrossRefGoogle Scholar
  14. Byrne HM, Chaplain MAJ, Pettet GJ, McElwain DLS (2001) An analysis of a mathematical model of trophoblast invasion. Appl Math Lett 14(8): 1005–1010zbMATHCrossRefGoogle Scholar
  15. Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system. Math Mod Methods Appl Sci 15: 1685–1734MathSciNetzbMATHCrossRefGoogle Scholar
  16. Chaplain MAJ, Lolas G (2006) Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Net Hetero Med 1: 399–439MathSciNetzbMATHGoogle Scholar
  17. Enderling H, Chaplain MAJ, Anderson ARA, Vaidya J (2007) A mathematical model of breast cancer development, local treatment and recurrence. J Theor Biol 246: 245–259MathSciNetCrossRefGoogle Scholar
  18. Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19: 331–358CrossRefGoogle Scholar
  19. Folkman J (1976) The vascularization of tumors. Sci Am 234(5): 58–73CrossRefGoogle Scholar
  20. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235(4787): 442–447CrossRefGoogle Scholar
  21. Frieboes HB, Zheng X, Sun CH, Tromberg B, Gatenby R, Christini V (2006) An integrated computational/experimental model of tumor invasion. Cancer Res 66: 1597–1604CrossRefGoogle Scholar
  22. Gatenby RA (1995) Models of tumor-host interaction as competing populations: implications for tumor biology and treatment. J Theor Biol 176(4): 447–455. doi: 10.1006/jtbi.1995.0212 CrossRefGoogle Scholar
  23. Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56(24): 5745–5753Google Scholar
  24. Gerisch A, Chaplain MAJ (2006) Robust numerical methods for taxis–diffusion–reaction systems: Applications to biomedical problems. Math Comput Model 43: 49–75MathSciNetzbMATHCrossRefGoogle Scholar
  25. Gerisch A, Chaplain MAJ (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250(4): 684–704CrossRefGoogle Scholar
  26. Hanahan D, Weinberg RA (2000) The hallmark of cancer. Cell 100: 57–70CrossRefGoogle Scholar
  27. Heppner GH (1984) Tumor heterogeneity. Cancer Res 44: 2259–2265Google Scholar
  28. Hillen T (2006) M5 Mesoscopic and Macroscopic Models for Mesenchymal Motion. J Math Biol 53(4): 585–616MathSciNetzbMATHCrossRefGoogle Scholar
  29. Hillen T, Painter KJ (2001) Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv Appl Math 26(4): 280–301. doi: 10.1006/aama.2001.0721 MathSciNetzbMATHCrossRefGoogle Scholar
  30. Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58: 183–217. doi: 10.1007/s00285-008-0201-3 MathSciNetzbMATHCrossRefGoogle Scholar
  31. Horváth Z (1998) Positivity of Runge–Kutta and diagonally split Runge–Kutta methods. Appl Numer Math 28(2–4): 309–326MathSciNetzbMATHCrossRefGoogle Scholar
  32. Izbicki JR, Hosch SB, Pichlmeier U, Rehders A, Busch C, Niendorf A, Passlick B, Broelsch CE, Pantel K (1997) Prognostic Value of Immunohistochemically Identifiable Tumor Cells in Lymph Nodes of Patients with Completely Resected Esophageal Cancer. N Engl J Med 337: 1188–1194CrossRefGoogle Scholar
  33. Jenkins G (2008) The role of proteases in transforming growth factor-β activation. Int J Biochem Cell Biol 40(6–7): 1068–1078. doi: 10.1016/j.biocel.2007.11.026 MathSciNetCrossRefGoogle Scholar
  34. Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as instability. J Theor Biol 26: 399–417CrossRefGoogle Scholar
  35. Lindemann F, Schlimok G, Dirschedl P, Witte J, Riethmuller G (1992) Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 340: 685–689. doi: 10.1016/0140-6736(92)92230-D CrossRefGoogle Scholar
  36. Lowengrub JS, Frieboes HB, Jin F, Chuang Y-L, Li X, Macklin P, Wise SM, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23: R1–R91. doi: 10.1088/0951-7715/23/1/R01 MathSciNetzbMATHCrossRefGoogle Scholar
  37. MacSween RNM (2003) Muir’s textbook of pathology 14th edn. Arnold, LondonGoogle Scholar
  38. Mantzaris NV, Webb S, Othmer HG (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49(2): 111–187. doi: 10.1007/s00285-003-0262-2 MathSciNetzbMATHCrossRefGoogle Scholar
  39. Martins VL, Vyas JJ, Chen M, Purdie K, Mein CA, South AP, Storey A, McGrath JA, O’Toole EA (2009) Increased invasive behaviour in cutaneous squamous cell carcinoma with loss of basement-membrane type VII collagen. J Cell Sci 122: 1788–1799. doi: 10.1242/jcs.042895 CrossRefGoogle Scholar
  40. Matzavinos A, Chaplain MAJ (2004) Travelling-wave analysis of a model of the immune response to cancer. C R Biol 327(11): 995–1008CrossRefGoogle Scholar
  41. Matzavinos A, Chaplain MAJ, Kuznetsov VA (2004) Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. IMA J Math Med Biol 21(1): 1–34zbMATHCrossRefGoogle Scholar
  42. Nyström ML, Thomas GJ, Stone M, Mackenzie IC, Hart IR, Marshall JF (2005) Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J Pathol 205(4): 468–475. doi: 10.1002/path.1716 CrossRefGoogle Scholar
  43. Orme ME, Chaplain MAJ (1996) A mathematical model of the first steps of tumour-related angiogenesis: Capillary sprout formation and secondary branching. IMA J Math Med Biol 13: 73–98zbMATHCrossRefGoogle Scholar
  44. Painter KJ (2009) Modelling cell migration strategies in the extracellular matrix. J Math Biol 58(4–5): 511–543. doi: 10.1007/s00285-008-0217-8 MathSciNetCrossRefGoogle Scholar
  45. Painter KJ, Hillen T (2002) Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Q 10(4): 501–543MathSciNetzbMATHGoogle Scholar
  46. Painter KJ, Armstrong NA, Sherratt JA (2010) The impact of adhesion on cellular invasion processes in cancer and development. J Theor Biol 264: 1057–1067CrossRefGoogle Scholar
  47. Parsons SL, Watson SA, Brown PD, Collins HM, Steele RJ (1997) Matrix metalloproteinases. Br J Surg 84(2): 160–166CrossRefGoogle Scholar
  48. Pearce IG, Chaplain MAJ, Schofield PG, Anderson ARA, Hubbard SF (2007) Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems. J Math Biol 55: 365–388MathSciNetzbMATHCrossRefGoogle Scholar
  49. Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21(7): 1104–1117CrossRefGoogle Scholar
  50. Perentes JY, McKee TD, Ley CD, Mathiew H, Dawson M, Padera TP, Munn LL, Jain RK, Boucher Y (2009) In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nature Methods 6(2): 143–145. doi: 10.1038/nmeth.1295 CrossRefGoogle Scholar
  51. Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM (1996) Biological inferences from a mathematical model for malignant invasion. Invasion Metastasis 16(4–5): 209–221Google Scholar
  52. Perumpanani AJ, Simmons DL, Gearing AJH, Miller KM, Ward G, Norbury J, Schneemann M, Sherratt JA (1998) Extracellular matrix-mediated chemotaxis can impede cell migration. Proc Roy Soc Lond B 265: 2347–2352CrossRefGoogle Scholar
  53. Poplawski NJ, Agero U, Gens JS, Swat M, Glazier JA, Anderson ARA (2009) Front instabilities and invasiveness of simulated avascular tumors. Bull Math Biol 71: 1189–1227MathSciNetzbMATHCrossRefGoogle Scholar
  54. Preziosi, L (eds) (2003) Cancer modelling and simulation. Chapman & Hall/CRC Press, Boca RatonzbMATHGoogle Scholar
  55. Ramis-Conde I, Drasdo D, Anderson ARA, Chaplain MAJ (2008) Modeling the influence of the E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys J 95: 155–165. doi: 10.1529/biophysj.107.114678 CrossRefGoogle Scholar
  56. Sherratt JA, Chaplain MAJ (2001) A new mathematical model for avascular tumour growth. J Math Biol 43: 291–312MathSciNetzbMATHCrossRefGoogle Scholar
  57. Sporn MB (1996) The war on cancer. Lancet 347(9012): 1377–1381CrossRefGoogle Scholar
  58. Spremulli EN, Dexter DL (1983) Human tumor cell heterogeneity and metastasis. J Clin Oncol 1(8): 496–509Google Scholar
  59. Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240: 177–184CrossRefGoogle Scholar
  60. Szymańska Z (2003) Analysis of immunotherapy models in the context of cancer dynamics. Int J Appl Math Comp 13: 407–418zbMATHGoogle Scholar
  61. Szymańska Z, Rodrigo CM, Lachowicz M, Chaplain MAJ (2009) Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math Mod Methods Appl Sci 19(2): 257–281zbMATHCrossRefGoogle Scholar
  62. Turner S, Sherratt JA (2002) Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J Theor Biol 216(1): 85–100. doi: 10.1006/jtbi.2001.2522 MathSciNetCrossRefGoogle Scholar
  63. Wang Z, Hillen T (2007) Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos 17: 037108. doi: 10.1063/1.2766864 MathSciNetCrossRefGoogle Scholar
  64. Weiner R, Schmitt BA, Podhaisky H (1997) ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs. Appl Numer Math 25: 303–319MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Vivi Andasari
    • 1
  • Alf Gerisch
    • 2
  • Georgios Lolas
    • 3
  • Andrew P. South
    • 4
  • Mark A. J. Chaplain
    • 1
  1. 1.Division of MathematicsUniversity of DundeeDundeeScotland
  2. 2.Technische Universität Darmstadt, Fachbereich MathematikDarmstadtGermany
  3. 3.Department of Chemical EngineeringNational Technical University of AthensAigaleo, AthensGreece
  4. 4.Department of Surgery and Molecular OncologyNinewells Hospital, University of DundeeDundeeScotland

Personalised recommendations