Journal of Mathematical Biology

, Volume 63, Issue 1, pp 33–56 | Cite as

Calculations for multi-type age-dependent binary branching processes

Article

Abstract

This article provides a method for calculating the joint probability density for the topology and the node times of a tree which has been produced by an multi-type age-dependent binary branching process and then sampled at a given time. These processes are a generalization, in two ways, of the constant rate birth–death process. There are a finite number of types of particle instead of a single type: each particle behaves in the same way as all others of the same type, but different types can behave differently. Secondly, the lifetime of a particle (before it either dies, changes to another type, or splits into 2) follows an arbitrary distribution, instead of the exponential lifetime in the constant rate case. Two applications concern models for macroevolution: the particles represent species, and the extant species are randomly sampled. In one application, 1-type and 2-type models for macroevolution are compared. The other is aimed at Bayesian phylogenetic analysis where the models considered here can provide a more realistic and more robust prior distribution over trees than is usually used. A third application is in the study of cell proliferation, where various types of cell can divide and differentiate.

Keywords

Tree Tree shape Branching process Bellman–Harris Bayesian phylogenetic analysis Macroevolution Cell proliferation 

Mathematics Subject Classification (2000)

92-08 60J85 60J80 45D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agapow PM, Purvis A (2002) Power of eight tree shape statistics to detect nonrandom diversification: a comparison by simulation of two models of cladogenesis. Syst Biol 51: 866–872CrossRefGoogle Scholar
  2. Aldous D (1996) Probability distributions on cladograms. In: Random discrete structures (Minneapolis, MN, 1993). IMA Vol Math Appl 76:1–18. Springer, New York. http://www.stat.berkeley.edu/users/aldous/Papers/me69.pdf
  3. Aldous DJ (2001) Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Stat Sci 16: 23–34MathSciNetMATHCrossRefGoogle Scholar
  4. Aldous D, Popovic L (2005) A critical branching process model for biodiversity. Adv Appl Probab 37(4): 1094–1115MathSciNetMATHCrossRefGoogle Scholar
  5. Alroy J (2008) Dynamics of origination and extinction in the marine fossil record. Natl Acad Sci USA 105(1): 11536–11542CrossRefGoogle Scholar
  6. Arrizon V, Tepichin E, Ortiz-Gutierrez M, Lohmann AW, Alroy J (1996) Constant extinction, constrained diversification, and uncoordinated stasis in north american mammals. Palaeogeogr Palaeoclimatol Palaeoecol 127(1): 285–311CrossRefGoogle Scholar
  7. Athreya KB, Ney PE (1972) Branching processes. Springer, BerlinMATHGoogle Scholar
  8. Bellman R, Harris TE (1952) On age-dependent binary branching processes. Ann Math 55: 280–295MathSciNetCrossRefGoogle Scholar
  9. Berger JO (1985) Statistical decision theory and bayesian analysis, 2nd edn. Springer, BerlinMATHGoogle Scholar
  10. Blum MGB, François O (2007) Which random processes describe the tree of life? A large-scale study of phylogenetic tree imbalance. Syst Biol 55(4): 685–691CrossRefGoogle Scholar
  11. Brandley MC, Leach AD, Warren DL, McGuire JA (2006) Are unequal clade priors problematic for Bayesian phylogenetics?. Syst Biol 55(1): 138–146CrossRefGoogle Scholar
  12. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, SunderlandGoogle Scholar
  13. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5): e88. doi:10.1371/journal.pbio.0040088 CrossRefGoogle Scholar
  14. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214CrossRefGoogle Scholar
  15. Felsenstein J (2003) Inferring phylogenies. Sinauer Associates, Sunderland. http://dx.doi.org/10.1016/S0022-0000(02)00003-X
  16. Ford D (2005) Probabilities on cladogram: introduction to the alpha model. http://arxiv.org/abs/math/0511246
  17. Ford D, Matsen E, Stadler T (2009) A method for investigating relative timing information on phylogenetic trees. Syst Biol 58: 167–183CrossRefGoogle Scholar
  18. Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253: 769–778CrossRefGoogle Scholar
  19. Gernhard T, Hartmann K, Steel M (2008) Stochastic properties of generalised Yule models, with biodiversity applications. J Math Biol 57: 713–735MathSciNetMATHCrossRefGoogle Scholar
  20. Heath TA, Zwickl DJ, Kim J, Hillis DM (2008) Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. Syst Biol 57(1): 160–166CrossRefGoogle Scholar
  21. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755. http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics17.html Google Scholar
  22. Hyrien O, Chen R, Mayer-Proöschel M, Noble M (2010) Saddlepoint approximations to the moments of multitype age-dependent branching processes, with applications. Biometrics 66(2): 567–577MATHCrossRefGoogle Scholar
  23. Hyrien O, Mayer-Proschel M, Noble M, Yakovlev A (2005) A stochastic model to analyze clonal data on multi type cell populations. Biometrics 61: 199–207MathSciNetMATHCrossRefGoogle Scholar
  24. Jones G (2010) Tree models for macro-evolution and phylogenetic analysis. Syst Biol (to appear)Google Scholar
  25. Kimmel M, Axelrod D (2002) Branching processes in biology. Springer, BerlinMATHGoogle Scholar
  26. Kirkpatrick M, Slatkin M (1993) Searching for evolutionary patterns in the shape of a phylogenetic tree. Evolution 47: 1171–1181CrossRefGoogle Scholar
  27. Kontoleon N (2006) The Markovian binary tree: a model of the macroevolutionary process. PhD thesis, The University of AdelaideGoogle Scholar
  28. Lawton JH, May RM (1995) Extinction rates. Oxford University Press, USAGoogle Scholar
  29. Lepage T, Bryant D, Philippe H, Lartillot N (2007) A general comparison of relaxed molecular clock models. Mol Biol Evol. doi:10.1093/molbev/msm193
  30. Nedelman J, Downs H, Pharr P (1987) Inference for an age-dependent, multitype branching-process model of mast cells. J Math Biol 25: 203–226MathSciNetMATHGoogle Scholar
  31. Nee S, May RM, Harvey PH (1994) The reconstructed evolutionary process. Philos Trans Biol Sci 344(1309): 305–311CrossRefGoogle Scholar
  32. Pickett KM, Randle CP (2005) Strange Bayes indeed: uniform topological priors imply non-uniform clade priors. Mol Phylogenet Evol 34: 203–211CrossRefGoogle Scholar
  33. Pickett KM, Randle CP (2006) Are nonuniform clade priors important in Bayesian phylogenetic analysis? A response to Brandley et al. Syst Biol 55(1): 147–151CrossRefGoogle Scholar
  34. Pinelis I (2003) Evolutionary models of phylogenetic trees. Proc Biol Sci 270(1522): 1425–1431. doi:10.1098/rspb.2003.2374 MathSciNetCrossRefGoogle Scholar
  35. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. ISBN 3-900051-07-0
  36. Sepkoski JJ Jr (1998) Rates of speciation in the fossil record. Philos Trans R Soc Lond B 353: 315–326CrossRefGoogle Scholar
  37. Stadler T (2008) Evolving trees—models for speciation and extinction in phylogenetics. PhD thesis, Technische Universität München, Zentrum MathematikGoogle Scholar
  38. Stadler T (2009) On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J Theor Biol 261: 58–66CrossRefGoogle Scholar
  39. Steel M, McKenzie A (2001) Properties of phylogenetic trees generated by Yule-type speciation models. Math Biosci 170(1): 91–112MathSciNetMATHCrossRefGoogle Scholar
  40. Venditti C, Meade A, Pagel M (2009) Phylogenies reveal new interpretation of speciation and the red queen. Nature 463: 349–352CrossRefGoogle Scholar
  41. Yakovlev AY, Yanev NM (1989) Transient processes in cell proliferation kinetics. Springer, BerlinMATHGoogle Scholar
  42. Yang Z, Rannala B (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43: 304–311CrossRefGoogle Scholar
  43. Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol Biol Evol 14(7): 717–724Google Scholar
  44. Yang Z, Rannala B (2005) Branch-length prior influences Bayesian posterior probability of phylogeny. Syst Biol 54(3): 455–470CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.SutherlandUK

Personalised recommendations