Journal of Mathematical Biology

, Volume 61, Issue 2, pp 231–251

Gene expression dynamics in randomly varying environments

Open Access


A simple model of gene regulation in response to stochastically changing environmental conditions is developed and analyzed. The model consists of a differential equation driven by a continuous time 2-state Markov process. The density function of the resulting process converges to a beta distribution. We show that the moments converge to their stationary values exponentially in time. Simulations of a two-stage process where protein production depends on mRNA concentrations are also presented demonstrating that protein concentration tracks the environment whenever the rate of protein turnover is larger than the rate of environmental change. Single-celled organisms are therefore expected to have relatively high mRNA and protein turnover rates for genes that respond to environmental fluctuations.


Gene expression Environmental stochasticity Stochastic process Stationary distribution 

Mathematics Subject Classification (2000)

92C37 92C42 60G10 


  1. Allen L (2003) An Introduction to stochastic processes with applications to biology. Prentice Hall, Upper Saddle RiverGoogle Scholar
  2. Athreya K, Lahiri S (2006) Measure theory and probability theory. Springer, New YorkGoogle Scholar
  3. Belle A, Tanay A, Bitincka L, Shamir R, O’Shea E (2006) Quantification of protein half-lives in the budding yeast proteome. Proc Nat Acad Sci 103(35): 13004–13009CrossRefGoogle Scholar
  4. Bennett M, Pang WL, Ostroff N, Baumgartner B, Nayak S (2008) Metabolic gene regulation in a dynamically changing environment. Nature 454: 1119–1122CrossRefGoogle Scholar
  5. Cook D, Gerber A, Tapscott S (1998) Modeling stochastic gene expression: Implications for haploinsufficiency. Proc Nat Acad Sci 95: 15641–15646CrossRefGoogle Scholar
  6. Davis MHA (1984) Piecewise-deterministic markov processes: a general class of non-diffusion stochastic models. J Royal Stat Soc B 46: 353–388MATHGoogle Scholar
  7. de Visser JAGM, Hermisson J, Wagner GP, Meyers LA, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003) Perspective: evolution and detection of genetic robustness. Evolution 57(9): 1959–1972CrossRefGoogle Scholar
  8. Dekel E, Mangan S, Alon U (2005) Environmental selection of the feed-forward loop circuit in gene-regulation networks. Phys Biol 2(2): 81–88CrossRefGoogle Scholar
  9. Diaconis P, Freedman D (1999) Iterated random functions. SIAM Rev 41: 45–76MATHCrossRefMathSciNetGoogle Scholar
  10. Durrett R (2004) Essentials of stochatic processes. Springer, New YorkGoogle Scholar
  11. Ellner SP (1996) You bet your life: life-history strategies in fluctuating environmnets. In: Othmer HG, Adler FR, Lewis MA, Dallon JC (eds) Case studies in mathematical modeling: ecology, physiology, and cell biology. Prentice Hall, Upper Saddle River, pp 3–24Google Scholar
  12. Feng L, Niu DK (2007) Relationship between mRNA stability and length: an old question with a new twist. Biochem Genet 45(1–2): 131–137. doi:10.1007/s10528-006-9059-5 CrossRefGoogle Scholar
  13. Freund J (1971) Mathematical statistics, 2nd edn. Prentice Hall, Englewood CliffsMATHGoogle Scholar
  14. Gander M, Mazza C, Rummler H (2007) Stochastic gene expression in switching environmnets. J Math Biol 55: 249–269MATHCrossRefMathSciNetGoogle Scholar
  15. Halbeisen RE, Galgano A, Scherrer T, Gerber AP (2008) Post-transcriptional gene regulation: from genome-wide studies to principles. Cell Mol Life Sci 65: 798–813CrossRefGoogle Scholar
  16. Horn R, Johnson C (1985) Matrix analysis. Cambridge University Press, New YorkMATHGoogle Scholar
  17. John F (1978) Partial differential equations, 3rd edn. Springer, New YorkMATHGoogle Scholar
  18. Karmakar R, Bose I (2004) Graded and binary responses in stochastic gene expression. Phys Biol 1: 197–204CrossRefGoogle Scholar
  19. Karmakar R, Bose I (2007) Positive feedback, stochasticity and genetic competence. Phys Biol 4: 29–37CrossRefGoogle Scholar
  20. Klyatskin VI (2005) Dynamics of stochastic systems. Elsevier, AmsterdamGoogle Scholar
  21. Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309: 2075–2078CrossRefGoogle Scholar
  22. Mazza C, Piau D (2001) Dubins–freedman processes and rc filters. Ann Appl Probab 11: 1330–1352MATHCrossRefMathSciNetGoogle Scholar
  23. McAdams HH, Srinivasan B, Arkin AP (2004) The evolution of genetic regulatory systems in bacteria. Nat Rev Genet 5(3): 169–178. doi:10.1038/nrg1292 CrossRefGoogle Scholar
  24. McFadden J (1959) The probability density of the output of an rc filter when the input is a binary random process. IRE Trans IT-5: 174–178MathSciNetGoogle Scholar
  25. Meyer S, Temme C, Wahle E (2004) Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 39(4): 197–216. doi:10.1080/10409230490513991 CrossRefGoogle Scholar
  26. Milstein G, Repin Y (1972) Action of Markov process on a system of differential equations. Differ Equ 5: 1010–1019Google Scholar
  27. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, Derisi JL, Weissman JS (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441(7095): 840–846. doi:10.1038/nature04785 CrossRefGoogle Scholar
  28. Papp B, Pál C, Hurst LD (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429(6992): 661–664. doi:10.1038/nature02636 CrossRefGoogle Scholar
  29. Pawula R, Rice S (1986) On filtered binary processes. IEEE Trans Inf Theory IT-32: 63–72CrossRefMathSciNetGoogle Scholar
  30. Pinsky M (1991) Lectures on random evolution. World Scientific, SingaporeMATHGoogle Scholar
  31. Proulx SR, Promislow DE, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20(6): 345–353. doi:10.1016/j.tree.2005.04.004 CrossRefGoogle Scholar
  32. Proulx SR, Phillips PC (2005) The opportunity for canalization and the evolution of genetic networks. Am Nat 165(2): 147–162. doi:10.1086/426873 CrossRefGoogle Scholar
  33. Seshasayee A, Bertone P, Fraser G, Luscombe N (2006) Transcriptional regulatory networks in bacteria: from input signals to output responses. Curr Opin Microbiol 9(5): 511–519. doi:10.1016/j.mib.2006.08.007 CrossRefGoogle Scholar
  34. Shahrezaei V, Swain PS (2008) Analytical distributions for stochastic gene expression. Proc Nat Acad Sci 105: 17256–17261CrossRefGoogle Scholar
  35. Srinivasan S, Vasudevan R (1971) Introduction to random differential equations and their applications. Elsevier, New YorkMATHGoogle Scholar
  36. Wagner A (2001) How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps. Bioinformatics 17(12): 1183–1197CrossRefGoogle Scholar
  37. Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22(6): 1365–1374. doi:10.1093/molbev/msi126 CrossRefGoogle Scholar
  38. Wagner A (2007) Energy costs constrain the evolution of gene expression. J Exp Zool B Mol Dev Evol 308(3): 322–324. doi:10.1002/jez.b.21152 CrossRefGoogle Scholar
  39. Wittkopp P (2007) Variable gene expression in eukaryotes: a network perspective. J Exp Biol 210(9): 1567–1575. doi:10.1242/jeb.002592 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Department of MathematicsIowa State UniversityAmesUSA
  2. 2.Ecology Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations