Journal of Mathematical Biology

, Volume 60, Issue 4, pp 573–590 | Cite as

Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth

  • Sarah Hews
  • Steffen Eikenberry
  • John D. Nagy
  • Yang Kuang


Chronic hepatitis B virus (HBV) infection is a major cause of human suffering, and a number of mathematical models have examined within-host dynamics of the disease. Most previous HBV infection models have assumed that: (a) hepatocytes regenerate at a constant rate from a source outside the liver; and/or (b) the infection takes place via a mass action process. Assumption (a) contradicts experimental data showing that healthy hepatocytes proliferate at a rate that depends on current liver size relative to some equilibrium mass, while assumption (b) produces a problematic basic reproduction number. Here we replace the constant infusion of healthy hepatocytes with a logistic growth term and the mass action infection term by a standard incidence function; these modifications enrich the dynamics of a well-studied model of HBV pathogenesis. In particular, in addition to disease free and endemic steady states, the system also allows a stable periodic orbit and a steady state at the origin. Since the system is not differentiable at the origin, we use a ratio-dependent transformation to show that there is a region in parameter space where the origin is globally stable. When the basic reproduction number, R 0, is less than 1, the disease free steady state is stable. When R 0 > 1 the system can either converge to the chronic steady state, experience sustained oscillations, or approach the origin. We characterize parameter regions for all three situations, identify a Hopf and a homoclinic bifurcation point, and show how they depend on the basic reproduction number and the intrinsic growth rate of hepatocytes.


HBV Ratio-dependent transformation Logistic hepatocyte growth Origin stability Hopf bifurcation Homoclinic bifurcation 

Mathematics Subject Classification (2000)

34C23 34C25 92C50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arguin PM, Kozarsky PE, Reed, C (eds) (2007) CDC health information for international travel 2008. Elsevier, PhiladelphiaGoogle Scholar
  2. Benn J, Schneider RJ (1995) Hepatitis B virus HBx protein deregulates cell cycle checkpoint controls. Proc Natl Acad Sci USA 92: 11215–11219CrossRefGoogle Scholar
  3. Berezovsky F, Karev G, Song B, Castillo-Chavez C (2005) A simple epidemic model with surprising dynamics. Math Biol Eng 2: 133–152MATHMathSciNetGoogle Scholar
  4. Ciupe SM, Ribeiro RM, Nelson PW, Dusheiko G, Perelson AS (2007a) The role of cells refractory to productive infection in acute hepatitis B viral dynamics. Proc Natl Acad Sci USA 104: 5050–5055CrossRefGoogle Scholar
  5. Ciupe SM, Ribeiro RM, Nelson PW, Perelson AS (2007b) Modeling the mechanisms of acute hepatitis B virus infection. J Theor Biol 247: 23–35CrossRefMathSciNetGoogle Scholar
  6. Dong Z, Zhang J, Sun R, Wei H, Tian Z (2007) Impairment of liver regeneration correlates with activated hepatic NKT cells in HBV transgenic mice. Hepatology 45: 1400–1412CrossRefGoogle Scholar
  7. Eikenberry S, Hews S, Nagy JD, Kuang Y (2009) The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Math Biol Eng 6(2): 283–299MATHCrossRefMathSciNetGoogle Scholar
  8. Fourel I, Cullen JM, Saputelli J, Aldrich CE, Schaffer P, Averett DR, Pugh J, Mason WS (1994) Evidence that hepatocyte turnover is required for rapid clearance of duck hepatitis B virus during antiviral therapy of chronically infected ducks. J Virol 68: 8321–8330Google Scholar
  9. Ganem D, Prince A (2004) Hepatitis B virus infection – natural history and clinical consequences. N Engl J Med 350: 1118–1129CrossRefGoogle Scholar
  10. Gourley SA, Kuang Y, Nagy JD (2008) Dynamics of a delay differential model of hepatitis B virus. J Biol Dyn 2: 140–153MATHCrossRefMathSciNetGoogle Scholar
  11. Grethe S, Heckel JO, Rietschel W, Hufert FT (2000) Molecular epidemiology of hepatitis B virus variants in nonhuman primates. J Virol 74: 5377–5381CrossRefGoogle Scholar
  12. Guidotti LG, Martinez V, Loh YT, Rogler CE, Chisari FV (1994) Hepatitis B virus nucleocapsid particles do not cross the hepatocyte nuclear membrane in transgenic mice. J Virol 68: 5469–5475Google Scholar
  13. Hodgson AJ, Keasler VV, Slagle BL (2008) Premature cell cycle entry induced by hepatitis B virus regulatory HBx protein during compensatory liver regeneration. Cancer Res 68: 10341–10348CrossRefGoogle Scholar
  14. Hsu SB, Hwang TW, Kuang Y (2001) Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system. J Math Biol 42: 489–506MATHCrossRefMathSciNetGoogle Scholar
  15. Hwang TW, Kuang Y (2003) Deterministic extinction effect of parasites on host populations. J Math Biol 46: 17–30MATHCrossRefMathSciNetGoogle Scholar
  16. Kwun HJ, Jang KL (2004) Natural variants of hepatitis B virus X protein have differential effects on the expression of cyclin-dependent kinase inhibitor p21 gene. Nucleic Acids Res 32: 2202–2213CrossRefGoogle Scholar
  17. Long C, Qi H, Huang SH (2008) Mathematical modeling of cytotoxic lymphocyte-mediated immune responses to hepatitis B virus infection. J Biomed Biotechnol 2008: 1–9CrossRefGoogle Scholar
  18. Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213: 286–300CrossRefGoogle Scholar
  19. Min L, Su Y, Kuang Y (2008) Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky Mount J Math 38: 1573–1585MATHCrossRefMathSciNetGoogle Scholar
  20. Nowak MA, May RM (2000) Virus dynamics. Oxford University Press, OxfordMATHGoogle Scholar
  21. Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H (1996) Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci USA 93: 4398–4402CrossRefGoogle Scholar
  22. Ozer A, Khaoustov VI, Mearns M, Lewis DE, Genta RM, Darlington GJ, Yoffe B (1996) Effect of hepatocyte proliferation and cellular DNA synthesis on hepatitis B virus replication. Gastroenterology 110: 1519–1528CrossRefGoogle Scholar
  23. Park US, Park SK, Lee YI, Park JG, Lee YI (2000) Hepatitis B virus-X protein upregulates the expression of p21waf1/cip1 and prolongs G1–>S transition via a p53-independent pathway in human hepatoma cells. Oncogene 19: 3384–3394CrossRefGoogle Scholar
  24. Rozga J (2002) Hepatocyte proliferation in health and in liver failure. Med Sci Monit 8: RA32–RA38Google Scholar
  25. Tennant BC, Gerin JL (2001) The woodchuck model of hepatitis B virus infection. ILAR J 42: 89–102Google Scholar
  26. Tralhao JG, Roudier J, Morosan S, Giannini C, Tu H, Goulenok C, Carnot F, Zavala F, Joulin V, Kremsdorf D, Brchot C (2002) Paracrine in hepatitis B virus X protein (HBx) on liver cell proliferation: an alternative mechanism of HBx-related pathogenesis. Proc Natl Acad Sci USA 99: 6991–6996CrossRefGoogle Scholar
  27. World Health Organization (2000) Hepatitis B fact sheet No. 204. WHO websiteGoogle Scholar
  28. Wu BK, Li CC, Chen HJ, Chang JL, Jeng KS, Chou CK, Hsu MT, Tsai TF (2006) Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice. Biochem Biophys Res Commun 340: 916–928CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sarah Hews
    • 1
  • Steffen Eikenberry
    • 1
  • John D. Nagy
    • 2
  • Yang Kuang
    • 1
  1. 1.Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  2. 2.Department of BiologyScottsdale Community CollegeScottsdaleUSA

Personalised recommendations