Advertisement

Watson–Crick pairing, the Heisenberg group and Milnor invariants

  • Siddhartha GadgilEmail author
Article

Abstract

We study the secondary structure of RNA determined by Watson–Crick pairing without pseudo-knots using Milnor invariants of links. We focus on the first non-trivial invariant, which we call the Heisenberg invariant. The Heisenberg invariant, which is an integer, can be interpreted in terms of the Heisenberg group as well as in terms of lattice paths. We show that the Heisenberg invariant gives a lower bound on the number of unpaired bases in an RNA secondary structure. We also show that the Heisenberg invariant can predict allosteric structures for RNA. Namely, if the Heisenberg invariant is large, then there are widely separated local maxima (i.e., allosteric structures) for the number of Watson–Crick pairs found.

Keywords

RNA secondary structure Stem-loop Free groups Milnor invariants Lower central series 

Mathematics Subject Classification (2000)

Primary: 57N10 Secondary: 53A10 

References

  1. 1.
    Cochran TD, Orr KE (1993) Not all links are concordant to boundary links. Ann Math (2) 138(3): 519–554zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cochran TD, Orr KE (2003) Teichner, Peter Knot concordance, Whitney towers and L 2-signatures. Ann Math (2) 157(2): 433–519zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Casson AJ (1975) Link cobordism and Milnor’s invariant. Bull London Math Soc 7: 39–40zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Freedman MH (1995) Teichner, Peter 4-manifold topology. I. Subexponential groups. Invent Math 122(3): 509–529zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Giffen CH (1979) Link concordance implies link homotopy. Math Scand 45(2): 243–254zbMATHMathSciNetGoogle Scholar
  6. 6.
    Goldsmith DL (1979) Concordance implies homotopy for classical links in M 3. Comment Math Helv 54(3): 347–355zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Krushkal VS (1998) Additivity properties of Milnor’s \({\overlineµ}\) -invariants. J Knot Theory Ramifications 7(5): 625–637zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Levine JP (1987) Surgery on links and the \({\overlineµ}\) -invariants. Topology 26(1): 45–61zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Milnor J (1954) Link groups. Ann Math 59(2): 177–195CrossRefMathSciNetGoogle Scholar
  10. 10.
    Milnor J (1957) Isotopy of links. Algebraic geometry and topology. A symposium in honor of S. Lefschetz. Princeton University Press, Princeton, NJ, pp 280–306Google Scholar
  11. 11.
    Stallings J (1965) Homology and central series of groups. J Algebra 2: 170–181zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gesteland RF, Atkins JF (1993) The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory Press, NY, USAGoogle Scholar
  13. 13.
    Fox GE, Woese CR (1975) RNA secondary structure. Nature 256: 505CrossRefGoogle Scholar
  14. 14.
    Gardner PP, Giegerich RA (2004) Comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinform 5: Art. No. 140Google Scholar
  15. 15.
    Ding Y (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31: 7280CrossRefGoogle Scholar
  16. 16.
    Dirks RM (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem 24: 1664CrossRefGoogle Scholar
  17. 17.
    Fields DS (1996) An analysis of large rRNA sequences folded by a thermodynamic method. Fold Des 1: 419CrossRefGoogle Scholar
  18. 18.
    Gorodkin J (2001) Discovering common stem-loop motifs in unaligned RNA sequences. Nucleic Acids Res 29: 2135CrossRefGoogle Scholar
  19. 19.
    Higgs PG (2000) RNA secondary structure: physical and computational aspects. Quart Rev Biophys 33: 199CrossRefGoogle Scholar
  20. 20.
    Hofacker IL (2004) Alignment of RNA base pairing probability matrices. Bioinformatics 20: 2222CrossRefGoogle Scholar
  21. 21.
    Jeffares DC (1998) Relics from the RNA world. J Mol Evol 46: 18CrossRefGoogle Scholar
  22. 22.
    Ji YM (2004) A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics 20: 1591CrossRefGoogle Scholar
  23. 23.
    Knudsen B (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15: 446CrossRefGoogle Scholar
  24. 24.
    Moulton V (2000) Metrics on RNA secondary structures. J Comput Biol 7: 277CrossRefGoogle Scholar
  25. 25.
    Nussinov R (1978) Algorithms for loop matchings. SIAM J Appl Math 35: 68zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Rivas E (2000) The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics 16: 334CrossRefGoogle Scholar
  27. 27.
    Tinoco I (1999) How RNA folds. J Mol Biol 293: 271CrossRefGoogle Scholar
  28. 28.
    Wang ZZ (2001) Alignment between two RNA structures. Math Found Comput Sci 2136: 690Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations