A mathematical model for brain tumor response to radiation therapy

  • R. Rockne
  • E. C. AlvordJr.
  • J. K. Rockhill
  • K. R. SwansonEmail author


Gliomas are highly invasive primary brain tumors, accounting for nearly 50% of all brain tumors (Alvord and Shaw in The pathology of the aging human nervous system. Lea & Febiger, Philadelphia, pp 210–281, 1991). Their aggressive growth leads to short life expectancies, as well as a fairly algorithmic approach to treatment: diagnostic magnetic resonance image (MRI) followed by biopsy or surgical resection with accompanying second MRI, external beam radiation therapy concurrent with and followed by chemotherapy, with MRIs conducted at various times during treatment as prescribed by the physician. Swanson et al. (Harpold et al. in J Neuropathol Exp Neurol 66:1–9, 2007) have shown that the defining and essential characteristics of gliomas in terms of net rates of proliferation (ρ) and invasion (D) can be determined from serial MRIs of individual patients. We present an extension to Swanson’s reaction-diffusion model to include the effects of radiation therapy using the classic linear-quadratic radiobiological model (Hall in Radiobiology for the radiologist. Lippincott, Philadelphia, pp 478–480, 1994) for radiation efficacy, along with an investigation of response to various therapy schedules and dose distributions on a virtual tumor (Swanson et al. in AACR annual meeting, Los Angeles, 2007).


Modeling Radiation therapy Glioma Linear-quadratic Tumor response Treatment fractionation 

Mathematics Subject Classification (2000)



  1. 1.
    Alvord EC Jr, Shaw CM (1991) Neoplasms affecting the nervous system in the elderly. In: Ducket S (eds) The pathology of the aging human nervous system. Lea & Febiger, Philadelphia, pp 210–281Google Scholar
  2. 2.
    Harpold HL, Alvord EC Jr, Swanson KR (2007) The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol 66: 1–9CrossRefGoogle Scholar
  3. 3.
    Hall E (1994) Radiobiology for the radiologist. Lippincott, Philadelphia, pp 478–480Google Scholar
  4. 4.
    Swanson KR, Rockne R, Rockhill JK, Alvord EC Jr (2007) Mathematical modeling of radiotherapy in individual glioma patients: quantifying and predicting response to radiation therapy. In: AACR annual meeting, Los AngelesGoogle Scholar
  5. 5.
    Alvord EC Jr (1995) Patterns of growth of gliomas. Am J Neuroradiol 16: 1013–1017Google Scholar
  6. 6.
    Nelson SJ, Cha S (2003) Imaging glioblastoma multiforme. J Cancer 9: 134–145CrossRefGoogle Scholar
  7. 7.
    Bloor R, Templeton AW, Quick RS (1962) Radiation therapy in the treatment of intracranial tumors. Am J Roentgenol Radium Ther Nucl Med 87: 463–472Google Scholar
  8. 8.
    Chicoine M, Silbergeld D (1995) Assessment of brain tumour cell motility in vivo and in vitro. J Neurosurg 82: 615–622Google Scholar
  9. 9.
    Swanson KR (1999) Mathematical modeling of the growth and control of tumors, PhD Thesis, University of WashingtonGoogle Scholar
  10. 10.
    Woodward DE, Cook J, Tracqui P, Cruywagen GC, Murray JD, Alvord EC Jr (1996) A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif 29: 269–288CrossRefGoogle Scholar
  11. 11.
    Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord EC Jr (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28: 17–31CrossRefGoogle Scholar
  12. 12.
    Murray JD (2002) Mathematical biology I. An introduction, 3rd edn. Springer, New York, pp 437–460Google Scholar
  13. 13.
    Carlone M, Wilkins D, Raaphorst P (2005) The modified linear-quadratic model of Guerrero and Li can be derived from a mechanistic basis and exhibits linear-quadratic-linear behaviour. Phys Med Biol 50: L9–L13 (author reply L13–L15)CrossRefGoogle Scholar
  14. 14.
    Sachs RK, Hlatky LR, Hahnfeldt P (2001) Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math Comp Model 33: 1297–1305zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Cunningh JR, Niederer J (1972) Mathematical-model for cellular response to radiation. Phys Med Biol 17: 685Google Scholar
  16. 16.
    Jones B, Dale RG (1995) Cell loss factors and the linear-quadratic model. Radiother Oncol 37: 136–139CrossRefGoogle Scholar
  17. 17.
    Taylor H, Karlin S (1984) An introduction to stochastic modeling. Academic Press, Chestnut HillGoogle Scholar
  18. 18.
    Swanson KR, Alvord EC Jr, Murray JD (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33: 317–329CrossRefGoogle Scholar
  19. 19.
    Burgess PK, Kulesa PM, Murray JD, Alvord EC Jr (1997) The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J Neuropathol Exp Neurol 56: 704–713Google Scholar
  20. 20.
    Swanson KR, Alvord EC Jr (2002) The concept of gliomas as a “traveling wave” the application of a mathematical model to high- and low-grade gliomas. Can J Neurol Sci 29: 395Google Scholar
  21. 21.
    Alvord EC Jr (1991) Simple model of recurrent gliomas. J Neurosurg 75: 337–338Google Scholar
  22. 22.
    Guenther R, Lee J (1988) Partial differential equations of mathematical physics and integral equations. Prentice Hall, Englewood Cliffs, pp 144–187Google Scholar
  23. 23.
    Swanson KR, Alvord EC Jr, Murray JD (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Brit J Cancer 86: 14–18CrossRefGoogle Scholar
  24. 24.
    Capelle L, Mandonnet E, Broet P, Swanson KR, Carpentier A, Duffau H, Delattre JY (2002) Linear growth of mean tumor diameter in WHO grade II gliomas. Neurology 58: A13Google Scholar
  25. 25.
    Swanson KR, Alvord EC Jr (2002) A biomathematical and pathological analysis of an untreated glioblastoma. In: Internatioal congress on neuropathology, HelsinkiGoogle Scholar
  26. 26.
    Mandonnet E, Delattre JY, Tanguy ML, Swanson KR, Carpentier AF, Duffau H, Cornu P, Van Effenterre R, Alvord EC Jr, Capelle L (2003) Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol 53: 524–528CrossRefGoogle Scholar
  27. 27.
    Mandonnet E, Broët P, Swanson KR, Carpentier AF, Delattre JY, Capelle L (2002) Linear growth of mean tumor diameter in low grade gliomas. Neurology 58((Suppl 13)): A13Google Scholar
  28. 28.
    Swanson KR, Rostomily RC, Alvord EC Jr (2003) Confirmation of a theoretical model describing the relative contributions of net growth and dispersal in individual infiltrating gliomas. Can J Neurol Sci 30: 407–434Google Scholar
  29. 29.
    Swanson KR, Alvord EC Jr (2001) A 3D quantitative model for brain tumor growth and invasion: correlation between the model and clinical behavior. Neuro Oncol 3: 323Google Scholar
  30. 30.
    Swanson KR, Alvord EC Jr, Murray JD (2003) Virtual resection of gliomas: effects of location and extent of resection on recurrence. Math Comp Model 37: 1177–1190zbMATHCrossRefGoogle Scholar
  31. 31.
    Tilly N, Brahme A, Carlsson J, Glimelius B (1999) Comparison of cell survival models for mixed LET radiation. Int J Radiat Biol 75: 233–243CrossRefGoogle Scholar
  32. 32.
    Sachs RK, Hahnfeld P, Brenner DJ (1997) The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int J Radiat Biol 72: 351–374CrossRefGoogle Scholar
  33. 33.
    Wheldon TE, O’Donoghue JA (1990) The radiobiology of targeted radiotherapy. Int J Radiat Biol 58: 1–21CrossRefGoogle Scholar
  34. 34.
    Enderling H, Anderson AR, Chaplain MA, Munro AJ, Vaidya JS (2006) Mathematical modelling of radiotherapy strategies for early breast cancer. J Theor Biol 241: 158–171CrossRefMathSciNetGoogle Scholar
  35. 35.
    Jones B, Dale RG (1999) Mathematical models of tumour and normal tissue response. Acta Oncol 38: 883–893CrossRefGoogle Scholar
  36. 36.
    Lee SP, Leu MY, Smathers JB, McBride WH, Parker RG, Withers HR (1995) Biologically effective dose distribution based on the linear quadratic model and its clinical relevance. Int J Rad Oncol Biol Phys 33: 375–389Google Scholar
  37. 37.
    Garcia LM, Leblanc J, Wilkins D, Raaphorst GP (2006) Fitting the linear-quadratic model to detailed data sets for different dose ranges. Phys Med Biol 51: 2813–2823CrossRefGoogle Scholar
  38. 38.
    McAneney H, O’Rourke SF (2007) Investigation of various growth mechanisms of solid tumour growth within the linear-quadratic model for radiotherapy. Phys Med Biol 52: 1039–1054CrossRefGoogle Scholar
  39. 39.
    Skeel R, Berzins M (1990) A method for the spatial descretization of parabolic equations in one space variable. SIAM J Sci Stat Comput 11: 1–32zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Hendry JH, Bentzen SM, Dale RG, Fowler JF, Wheldon TE, Jones B, Munro AJ, Slevin NJ, Robertson AG (1996) A modelled comparison of the effects of using different ways to compensate for missed treatment days in radiotherapy. Clin Oncol (R Coll Radiol) 8: 297–307Google Scholar
  41. 41.
    O’Donoghue JA (1997) The response of tumours with gompertzian growth characteristics to fractionated radiotherpay. Int J Radiat Biol 72: 325–339CrossRefGoogle Scholar
  42. 42.
    Wheldon TE, Berry I, O’Donoghue JA, Gregor A, Hann IM, Livingstone A, Russell J, Wilson L (1987) The effect on human neuroblastoma spheroids of fractionated radiation regimes calculated to be equivalent for damage to late responding normal tissues. Eur J Cancer Clin Oncol 23: 855–860CrossRefGoogle Scholar
  43. 43.
    Abou-Jaoude W, Dale R (2004) A theoretical radiobiological assessment of the influence of radionuclide half-life on tumor response in targeted radiotherapy when a constant kidney toxicity is maintained. Cancer Biother Radiopharm 19: 308–321CrossRefGoogle Scholar
  44. 44.
    Gerosa M, Nicolato A, Foroni R (2003) The role of gamma knife radiosurgery in the treatment of primary and metastatic brain tumors. Curr Opin Oncol 15: 188–196CrossRefGoogle Scholar
  45. 45.
    Padhani AR, Ollivier L (2001) The RECIST (response evaluation criteria in solid tumors) criteria: implications for diagnostic radiologists. Br J Radiol 74: 983–986Google Scholar
  46. 46.
    Qi XS, Schultz CJ, Li XA (2006) An estimation of radiobiologic parameters from clinical outcomes for radiation treatment planning of brain tumor. Int J Radiat Oncol Biol Phys 64: 1570–1580Google Scholar
  47. 47.
    Wheldon TE, Deehan C, Wheldon EG, Barrett A (1998) The linear-quadratic transformation of dose-volume histograms in fractionated radiotherapy. Radiother Oncol 46: 285–295CrossRefGoogle Scholar
  48. 48.
    Ribba B, Colin T, Schnell S (2006) A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor Biol Med Model 3Google Scholar
  49. 49.
    Stamatakos GS, Antipas VP, Uzunoglu NK, Dale RG (2006) A four-dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme: studies on the effect of clonogenic cell density. Br J Radiol 79: 389–400CrossRefGoogle Scholar
  50. 50.
    Enderling H, Chaplain MA, Anderson AR, Vaidya JS (2007) A mathematical model of breast cancer development, local treatment and recurrence. J Theor Biol 246: 245–259CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • R. Rockne
    • 1
  • E. C. AlvordJr.
    • 1
  • J. K. Rockhill
    • 1
  • K. R. Swanson
    • 1
    Email author
  1. 1.Department of PathologyUniversity of WashingtonWashingtonUSA

Personalised recommendations