Journal of Mathematical Biology

, Volume 58, Issue 3, pp 459–479 | Cite as

A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment

  • Masataka Kuwamura
  • Takefumi Nakazawa
  • Toshiyuki Ogawa
Article

Abstract

In this paper, a mathematical model of a prey-predator system is proposed to resolve the paradox of enrichment in ecosystems. The model is based on the natural strategy that a predator takes, i.e, it produces resting eggs in harsh environment. Our result gives a criterion for a functional response, which ensures that entering dormancy stabilizes the population dynamics. It is also shown that the hatching of resting eggs can stabilize the population dynamics when the switching between non-resting and resting eggs is sharp. Furthermore, the bifurcation structure of our model suggests the simultaneous existence of a stable equilibrium and a large amplitude cycle in natural enriched environments.

Keywords

Prey-predator system Dormancy Hatching Eutrophication Saddle-node bifurcation 

Mathematics Subject Classification (2000)

92D25 92D40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams P.A., Walters C.J.: Invulnerable prey and the paradox of enrichment. Ecology 77, 1125–1133 (1996)CrossRefGoogle Scholar
  2. 2.
    Alekseev V., Lampert W.: Maternal control of resting-egg production in Dapnia. Nature 414, 899–901 (2001)CrossRefGoogle Scholar
  3. 3.
    Carvalho G.R., Hughes R.N.: Effect of food availability, female culture-density and photoperiod on ephippia production in Daphnia magna Strauss (Crustacea: Cladocera). Freshw. Biol. 13, 37–46 (1983)CrossRefGoogle Scholar
  4. 4.
    Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, B.E., Paffenroth, R.C., Sandstede, B., Wang, X.: AUTO 2000: Continuation and bifurcation software for ordinary differential equations (with HomCont) (2000)Google Scholar
  5. 5.
    Ei S.-I., Kuwamura M., Morita Y.: A variational approach to singular perturbation problems in reaction-diffusion systems. Physica D 207, 171–219 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Genkai-Kato M., Yamamura N.: Unpalatable prey resolves the paradox of enrichment. Proc. R. Soc. Lond. B. 266, 1215–1219 (1999)CrossRefGoogle Scholar
  7. 7.
    Genkai-Kato M., Yamamura N.: Profitability of prey determines the response of population abundances to enrichment. Proc. R. Soc. Lond. B. 267, 2397–2401 (2000)CrossRefGoogle Scholar
  8. 8.
    Grover J.P.: Competition, herbivory and enrichment: nutrient-based model for edible and inedible plants. Am. Nat. 145, 746–774 (1995)CrossRefGoogle Scholar
  9. 9.
    Gyllström M., Hansson L.-A.: Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274–295 (2004)CrossRefGoogle Scholar
  10. 10.
    Henry D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Note in Mathematics, vol. 840. Springer, Heidelberg (1981)Google Scholar
  11. 11.
    Hairston N.G. Jr, Hansen A.M., Schaffner W.R.: The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw. Biol. 45, 133–145 (2000)CrossRefGoogle Scholar
  12. 12.
    Hairston N.G. Jr, Van Brunt R.A., Kearns C.M.: Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76, 1706–1711 (1995)CrossRefGoogle Scholar
  13. 13.
    Holyoak M.: Effects of nutrient enrichment on prey-predator metapopulation dynamics. J. Anim. Ecol. 69, 985–997 (2000)CrossRefGoogle Scholar
  14. 14.
    Jansen V.A.A.: Regulation of predator-prey systems through spatial interactions: A possible solution to the paradox of enrichment. Oikos 74, 384–390 (1995)CrossRefGoogle Scholar
  15. 15.
    Jensen C.X.J., Ginzburg L.R.: Paradox or theoretical failures? The jury is still out. Ecol. Model. 188, 3–14 (2005)CrossRefGoogle Scholar
  16. 16.
    Kirk K.L.: Enrichment can stabilize population dynamics: autotoxins and density dependence. Ecology 79, 2456–2462 (1998)Google Scholar
  17. 17.
    Kuznetsov Y.A.: Elements of Applied Bifurcation Theory (3rd edition). Springer, Heidelberg (2004)Google Scholar
  18. 18.
    McAllister C.D., Lebrasseur R.J., Parsons T.R., Rosenzweig M.L.: Stability of enriched aquatic ecosystems. Science 175, 562–565 (1972)CrossRefGoogle Scholar
  19. 19.
    McCauley E., Murdoch W.W.: Predator-prey dynamics in environments rich and poor in nutrients. Nature 343, 455–457 (1990)CrossRefGoogle Scholar
  20. 20.
    McCauley E., Nisbet R.M., Murdoch W.W., de Roos A.M., Gurney W.S.C.: Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653–656 (1999)CrossRefGoogle Scholar
  21. 21.
    Murdoch W.W., Nisbet R.M., McCauley E., de Roos A.M., Gurney W.S.C.: Plankton abundance and dynamics across nutrient levels: tests of hypotheses. Ecology 79, 1339–1356 (1998)CrossRefGoogle Scholar
  22. 22.
    Nakazawa, T., Kuwamura, M., Shimoda, M.: A mathematical model of prey-predator system with dormancy of predators (in Japanese). In: Proceedings of RIMS Kyoto University (Sūrikaisekikenkyūsho Kōkyūroku), vol. 1556, pp. 123–130 (2007)Google Scholar
  23. 23.
    Nakazawa, T., Kuwamura, M., Yamamura, N.: Resting eggs of zooplankton and the pradox of enrichment, submittedGoogle Scholar
  24. 24.
    Nilsson P.A., Nyström P., Romare P., Tranvik L.: Effects of enrichment on simple aquatic food webs. Am. Nat. 157, 654–669 (2001)CrossRefGoogle Scholar
  25. 25.
    Petrovskii S., Li B.-L., Malchow H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complexity 1, 37–47 (2004)CrossRefGoogle Scholar
  26. 26.
    Ricci C.: Dormancy patterns in rorifers. Hydrobiologia 446, 1–11 (2001)CrossRefGoogle Scholar
  27. 27.
    Rinaldi S., Muratori S., Kuznetsov Y.: Multiple attractors, catastrophes and chaos in seasonally perturbed prey-predator communities. Bull. Math. Biol. 55, 15–35 (1993)MATHGoogle Scholar
  28. 28.
    Rosenzweig M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)CrossRefGoogle Scholar
  29. 29.
    Rosenzweig M.L., MacArthur R.H.: Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 47, 209–223 (1963)CrossRefGoogle Scholar
  30. 30.
    Scheffer M., de Boer R.J.: Implications of spatial heterogenety for the paradox of enrichment. Ecology 76, 2270–2277 (1995)CrossRefGoogle Scholar
  31. 31.
    Vos M., Kooi B.W., DeAngelis D.L., Mooij W.M.: Inducible defences and the paradox of enrichment. Oikos 105, 471–480 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Masataka Kuwamura
    • 1
  • Takefumi Nakazawa
    • 2
  • Toshiyuki Ogawa
    • 3
  1. 1.Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
  2. 2.Center for Ecological ResearchKyoto UniversityOtsuJapan
  3. 3.Graduate School of Engineering ScienceOsaka UniversityOsakaJapan

Personalised recommendations