Trait Substitution Sequence process and Canonical Equation for age-structured populations



We are interested in a stochastic model of trait and age-structured population undergoing mutation and selection. We start with a continuous time, discrete individual-centered population process. Taking the large population and rare mutations limits under a well-chosen time-scale separation condition, we obtain a jump process that generalizes the Trait Substitution Sequence process describing Adaptive Dynamics for populations without age structure. Under the additional assumption of small mutations, we derive an age-dependent ordinary differential equation that extends the Canonical Equation. These evolutionary approximations have never been introduced to our knowledge. They are based on ecological phenomena represented by PDEs that generalize the Gurtin–McCamy equation in Demography. Another particularity is that they involve an establishment probability, describing the probability of invasion of the resident population by the mutant one, that cannot always be computed explicitly. Examples illustrate how adding an age-structure enrich the modelling of structured population by including life history features such as senescence. In the cases considered, we establish the evolutionary approximations and study their long time behavior and the nature of their evolutionary singularities when computation is tractable. Numerical procedures and simulations are carried.


Age-structure Adaptive Dynamics Mutation-selection Trait Substitution Sequence Time scale separation Canonical Equation Interacting particle systems 

Mathematics Subject Classification (2000)

92D15 60J80 60K35 60F99 


  1. 1.
    Athreya K.B., Ney P.E.: Branching Processes. Springer edition, Heidelberg (1970)Google Scholar
  2. 2.
    Busenberg S., Iannelli M.: A class of nonlinear diffusion problems in age-dependent population dynamics. Nonlinear Anal. Theory Methods Appl. 7(5), 501”29 (1983)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Champagnat, N.: Convergence and existence for polymorphic adaptive dynamics jump and degenerate diffusion models. Preprint Laboratoire MODAL’X 03/7, 03 2003Google Scholar
  4. 4.
    Champagnat N.: A microscopic interpretation for adaptative dynamics trait substitution sequence models. Stoch. Process. Appl. 116, 1127”160 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Champagnat, N., Ferrière, R., Méléard, S.: Individual-based probabilistic models of adpatative evolution and various scaling approximations. In: Proceedings of the 5th seminar on Stochastic Analysis, Random Fields and Applications, Probability in Progress Series, Ascona, Suisse, 2006. Birkhauser, BaselGoogle Scholar
  6. 6.
    Champagnat N., Ferrière R., Méléard S.: Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models via timescale separation. Theor. Populat. Biol. 69, 297”21 (2006)MATHCrossRefGoogle Scholar
  7. 7.
    Charlesworth B.: Evolution in Age structured Population, 2nd edn. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  8. 8.
    Dawson, D.A.: Mesure-valued markov processes. In: Ecole d’Eté de probabilités de Saint-Flour XXI, pp. 1”60. Lectures Notes in Math., vol. 1541. Springer, New York (1993)Google Scholar
  9. 9.
    Dieckmann U., Heino M., Parvinen K.: The adaptive dynamics of function-valued traits. J. Theor. Biol. 241(2), 370”89 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Dieckmann U., Law R.: The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579”12 (1996)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Diekmann O.: A beginner’s guide to adaptive dynamics. Banach Center Publ. 63, 47”6 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Doney R.A.: Age-dependent birth and death processes. Z. Wahrscheinlichkeitstheorie verw. 22, 69”0 (1972)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Durinx, M., Metz, J.A.J.: Multi-type branching processes and adaptive dynamics of structured populations. In: Haccou, P., Jagers, P., Vatutin, V (eds.) Branching Processes in Biology: Variation, Growth and Extinction of Populations, pp. 266”77. Cambridge University Press, Cambridge (2005)Google Scholar
  14. 14.
    Ernande B., Dieckman U., Heino M.: Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. Proc. R. Soc. Lond. B 271, 415”23 (2004)CrossRefGoogle Scholar
  15. 15.
    Von Foerster H.: Some remarks on changing populations. In: Stohlman, F. Jr. (eds) The Kinetics of Cellular Proliferation, pp. 382”07. Grune & Stratton, New York (1959)Google Scholar
  16. 16.
    Fournier N., Méléard S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14(4), 1880”919 (2004)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Geritz S.A.H., Metz J.A.J., Kisdi E., Meszéna G.: The dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 78, 2024”027 (1997)CrossRefGoogle Scholar
  18. 18.
    Gurtin M.E., MacCamy R.C.: Nonlinear age-dependent population dynamics. Arch. Rat. Mech. Anal. 54, 281”00 (1974)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Henrici P.: Applied and Computational Complex Analysis. Wiley, New York (1997)Google Scholar
  20. 20.
    Henson S.M.: A continuous age-structured insect population model. J. Math. Biol. 39, 217”43 (1999)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hofbauer J., Sigmund R.: Adaptive dynamics and evolutionary stability. Appl. Math. Lett. 3, 75”9 (1990)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Jagers P.: Branching Processes with Biological Applications. Wiley, New York (1975)MATHGoogle Scholar
  23. 23.
    Jagers P.: Coupling and population dependence in branching processes. Ann. Appl. Probab. 7(2), 281”98 (1997)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Jagers P., Klebaner F.: Population-size-dependent and age-dependent branching processes. Stochast. Process. Appl. 87, 235”54 (2000)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kendall D.G.: Stochastic processes and population growth. J. Roy. Stat. Sec. Ser. B 11, 230”64 (1949)MathSciNetGoogle Scholar
  26. 26.
    Kingsbury, A.: Pink salmon. Alaska Department of Fish and Game, “”(1994)
  27. 27.
    Kisdi E.: Evolutionary branching under asymmetric competition. J. Theor. Biol. 197(2), 149”62 (1999)CrossRefMathSciNetGoogle Scholar
  28. 28.
    McKendrick A.G.: Applications of mathematics to medical problems. Proc. Edin. Math.Soc. 54, 98”30 (1926)Google Scholar
  29. 29.
    Metz, J.A.J.: Fitness. In: Jorgensen, S.E. (ed.) Encyclopedia of Ecology. Elsevier, AmsterdamGoogle Scholar
  30. 30.
    Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.A.J., Van Heerwaarden, J.S.: Adaptative dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: Van Strien, S.J., Verduyn Lunel, S.M. (eds.) Stochastic and Spatial Structures of Dynamical Systems, vol. 45, pp. 183”31 (1996)Google Scholar
  31. 31.
    Mischler S., Perthame B., Ryzhik L.: Stability in a nonlinear population maturation model. Math. Models Methods Appl. Sci. 12, 1”2 (2002)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Murray, J.D.: Mathematical Biology, vol. 19 of Biomathematics, 3rd edn. Springer, Heidelberg (1993)Google Scholar
  33. 33.
    Oelschläger K.: Limit theorem for age-structured populations. Ann. Probab. 18(1), 290”18 (1990)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Parvinen K., Dieckmann U., Heino M.: Function-valued adaptive dynamics and the calculus of variations. J. Math. Biol. 52, 1”6 (2006)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Perthame B., Ryzhik L.: Exponential decay for the fragmentation or cell-division equation. J. Differ. Equat. 210, 155”77 (2005)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Promislow D.E.L.: Senescence in natural population of mammals: a comparative study. Evolution 45(8), 1869”887 (1991)CrossRefGoogle Scholar
  37. 37.
    Rachev S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York (1991)MATHGoogle Scholar
  38. 38.
    Rotenberg M.: Transport theory for growing cell populations. J. Theor. Biol. 103, 181”99 (1983)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Thieme H.R.: Mathematics in Population Biology. Princeton Series in Theoretical and Computational Biology. Princeton University Press, New Jersey (2003)Google Scholar
  40. 40.
    Tran, V.C.: Modèles particulaires stochastiques pour des problèmes d’évolution adaptative et pour l’approximation de solutions statistiques. PhD thesis, Université Paris X - Nanterre. ”
  41. 41.
    Tran V.C.: Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM: P&S 12, 345”86 (2008)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Monographs and Textbooks in Pure and Applied mathematics, vol. 89. Marcel Dekker, inc., New York (1985)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.CMAPEcole PolytechniquePalaiseau CedexFrance
  2. 2.Laboratoire Paul PainlevéUniversité Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations