Analyzing fish movement as a persistent turning walker
- 702 Downloads
- 60 Citations
Abstract
The trajectories of Kuhlia mugil fish swimming freely in a tank are analyzed in order to develop a model of spontaneous fish movement. The data show that K. mugil displacement is best described by turning speed and its auto-correlation. The continuous-time process governing this new kind of displacement is modelled by a stochastic differential equation of Ornstein–Uhlenbeck family: the persistent turning walker. The associated diffusive dynamics are compared to the standard persistent random walker model and we show that the resulting diffusion coefficient scales non-linearly with linear swimming speed. In order to illustrate how interactions with other fish or the environment can be added to this spontaneous movement model we quantify the effect of tank walls on the turning speed and adequately reproduce the characteristics of the observed fish trajectories.
Keywords
Fish displacement model Stochastic model Nonlinear diffusion Ornstein–Uhlenbeck processPreview
Unable to display preview. Download preview PDF.
References
- 1.Alt, W.: Modelling of motility in biological systems. In: McKenna J., Temam R. (eds.) ICIAM’87 Proceedings of the First International Conference on Industrial and Applied Mathematics, pp. 15–30. Society for Industrial and Applied Mathematics, Philadelphia (1988)Google Scholar
- 2.Alt W.: Correlation analysis of two-dimensional locomotion paths. In: Alt, W., Hoffmann, G.(eds) Biological Motion, Lecture Notes in Biomathematics, vol 89. Springer (1990)Google Scholar
- 3.Aoki I.: An analysis of the schooling behavior of fish: internal organization and communication process. Bull. Ocean Res. Inst. Univ. Tokyo 12, 1–65 (1980)MathSciNetGoogle Scholar
- 4.Bai, H., Arcaka, M., Wen, J.T.: Adaptive design for reference velocity recovery in motion coordination. Syst. Control Lett. (2008, in press) doi: 10.1016/j.sysconle.2007.07.003
- 5.Balc T., Arkin R.: Behavior-based formation control for multi-robot teams. IEEE Trans. Robot. Autom. 14, 926–939 (1998)CrossRefGoogle Scholar
- 6.Benhamou S.: How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension?. J. Theor. Biol. 229, 209–220 (2004)CrossRefMathSciNetGoogle Scholar
- 7.Bianchi C., Cleur E.M.: Indirect estimation of stochastic differential equation models: some computational experiments. Comput. Econ. 9, 257–274 (1996)zbMATHCrossRefGoogle Scholar
- 8.Borenstein J., Koren Y.: The vector field histogram—fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7, 278–288 (1991)CrossRefGoogle Scholar
- 9.Brillinger D.R.: A particle migrating randomly on a sphere. J. Theor. Probab. 10, 429–443 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
- 10.Brillinger D.R., Preisler H.K., Ager A.A., Kie J.G., Stewart B.S.: Employing stochastic differential equations to model wildlife motion. Bull. Braz. Math. Soc. New Ser 33, 385–408 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
- 11.Caillol J-M.: Random walks on hyperspheres of arbitrary dimensions. J. Phys. A Math. Gen. 37, 3077–3083 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
- 12.Camazine S., Deneubourg J-L., Franks N., Sneyd J., Theraulaz G., Bonabeau E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)Google Scholar
- 13.Casellas E., Gautrais J., Fournier R., Blanco S., Combe M., Fourcassie V., Theraulaz G., Jost C.: From individual to collective displacements in heterogeneous environments. J. Theor. Biol. 250, 424–434 (2007)CrossRefGoogle Scholar
- 14.Challet M., Jost C., Grimal A., Lluc J., Theraulaz G.: How temperature influences displacements and corpse aggregation behaviors in the ant Messor Sancta. Ins. Soc. 52, 309–315 (2005)CrossRefGoogle Scholar
- 15.Grégoire G., Chaté H., Tu Y.: Moving and staying together without a leader. Phys. D 181, 157–170 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
- 16.Chowdhury, D.: 100 years of Einstein’s theory of Brownian motion: from pollen grains to protein trains. Resonance (Indian Academy of Sciences) 10, 63. arXiv:cond-mat/0504610 (2005)Google Scholar
- 17.Cleveland W.S., Grosse E., Shyu W.M.: Local regression models. In: Chambers, J., Hastie, T.J.(eds) Statistical Models in S, pp. 309–376. Wadsworth, Pacific Grove (1992)Google Scholar
- 18.Couzin I.D., Krause J.K., James R., Ruxton G.D., Franks N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol 218, 1–11 (2002)CrossRefMathSciNetGoogle Scholar
- 19.Couzin I.D., Krause J., Franks N.R., Levin S.A.: Effective leadership and decision making in animal groups on the move. Nature 433, 513–516 (2005)CrossRefGoogle Scholar
- 20.Degond P., Motsch S.: Large scale dynamics of the persistent turning walker model of fish behavior. J. Stat. Phys 131, 989–1021 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
- 21.Do K.D., Jiang Z.P., Pan J.: Underactuated ship global tracking under relaxed conditions. IEEE Trans. Autom. Control 47, 1529–1536 (2002)CrossRefMathSciNetGoogle Scholar
- 22.Ferrando, S.E., Kolasa, L.A., Kovacevic, N.: Wave++: a C++ library of signal analysis tools (2007) http://www.scs.ryerson.ca/~lkolasa/CppWavelets.html
- 23.Fish, F.E.: Performance constraints on the maneuverability of flexible and rigid biological systems. In: Proceedings of the Eleventh International Symposium on Unmanned Untethered Submersible Technology, pp. 394–406. Autonomous Undersea Systems Institute, Durham (1999)Google Scholar
- 24.Gautrais, J., Jost, C., Theraulaz, G.: Key behavioural factors in a self-organised fish school model. Annales Zoologici Fennici (2008, in press)Google Scholar
- 25.Gazi V., Passino K.M.: Stability analysis of swarms. IEEE Trans. Autom. Control 48, 692–697 (2003)CrossRefMathSciNetGoogle Scholar
- 26.Grünbaum D., Viscido S., Parrish J.K.: Extracting interactive control algorithms from group dynamics of schooling fish. In: Kumar, V., Leonard, N.E., Morse, A.S.(eds) Lecture Notes in Control and Information Sciences, pp. 103–117. Springer, Berlin (2004)Google Scholar
- 27.Hapca S., Crawford J.W., MacMillan K., Wilson M.J., Young I.M.: Modelling nematode movement using time-fractional dynamics. J. Theor. Biol. 248, 212–224 (2007)CrossRefGoogle Scholar
- 28.Hoffman G.: The random elements in the systematic search behavior of the desert isopod Hemilepistus reaumuri. Behav. Ecol. Sociobiol. 13, 81–92 (1983)CrossRefGoogle Scholar
- 29.Hoffman G.: The search behavior of the desert isopod Hemilepistus reaumuri as compared with a systematic search. Behav. Ecol. Sociobiol. 13, 93–106 (1983)CrossRefGoogle Scholar
- 30.Huepe C., Aldana M.: New tools for characterizing swarming systems: a comparison of minimal models. Phys. A 387, 2809–2822 (2008)Google Scholar
- 31.Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 988–1001 (2003)Google Scholar
- 32.Jeanson R., Blanco S., Fournier R., Deneubourg J-L., Fourcassié V., Theraulaz G.: A model of animal movements in a bounded space. J. Theor. Biol. 225, 443–451 (2003)CrossRefGoogle Scholar
- 33.Justh E.W., Krishnaprasad P.S.: Equilibria and steering laws for planar formations. Syst. Control Lett. 52, 25–38 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
- 34.Kareiva P.M., Shigesada N.: Analyzing insect movement as a correlated random walk. Oecologia 56, 234–238 (1983)CrossRefGoogle Scholar
- 35.Kareiva P.: Habitat fragmentation and the stability of predator–prey interactions. Nature 326, 388–390 (1987)CrossRefGoogle Scholar
- 36.Keenleyside M.H.A.: Some aspects of the schooling behaviour of fish. Behaviour 8, 183–248 (1955)CrossRefGoogle Scholar
- 37.Komin N., Erdmann U., Schimansky-Geier L.: Random walk theory applied to daphnia motion. Fluct. Noise Lett. 4, 151–159 (2004)CrossRefGoogle Scholar
- 38.Latombe J.C.: Motion planning: a journey of robots, molecules, digital actors, and other artifacts. Int. J. Robot. Res. 18, 1119–1128 (1999)CrossRefGoogle Scholar
- 39.Laumond J.P., Risler J.J.: Nonholonomic systems: Controllability and complexity. Theor. Comput. Sci. 157, 101–114 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
- 40.Lin Z., Broucke M.E., Francis B.A.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. Autom. Control 49, 622–629 (2004)CrossRefMathSciNetGoogle Scholar
- 41.Marshall J.A., Broucke M.E., Francis B.A.: Formations of vehicles in cyclic pursuit. IEEE Trans. Autom. Control 49, 1963–1974 (2004)CrossRefMathSciNetGoogle Scholar
- 42.Murray R.M., Sastry S.S.: Nonholonomic motion planning: steering using sinusoids. IEEE Trans. Autom. Control 38, 700–716 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
- 43.Nagy M., Darukab I., Vicsek T.: New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion. Phys. A 373, 445–454 (2007)CrossRefGoogle Scholar
- 44.Patlak C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)CrossRefMathSciNetGoogle Scholar
- 45.Patlak C.S.: A mathematical contribution to the study of orientation of organisms. Bull. Math. Biophys. 15, 431–476 (1953)CrossRefMathSciNetGoogle Scholar
- 46.Parrish J.K., Turchin P.: Individual decisions, traffic rules, and emergent pattern in schooling fish. In: Parrish, J.K., Hammer, W.M.(eds) Animal Groups in Three Dimensions, pp. 126–142. Cambridge University Press, London (1997)Google Scholar
- 47.Perrin F.: Etude mathématique du mouvement brownien de rotation. Annales scientifiques de l’ENS 45, 1–51 (1928)MathSciNetGoogle Scholar
- 48.Preisler, H.K., Brillinger, D.R., Ager, A.A., Kie, J.G., Akers, R.P.: Stochastic differential equations: a tool for studying animal movement. In: Proceedings of International Union Forest Research Organization (2001)Google Scholar
- 49.Radakov D.: Schooling in the Ecology of Fish. Wiley, New York (1973)Google Scholar
- 50.Reynolds C.W.: Flocks, herds, and schools: a distributed behavioural model. Comput. Graph. 21, 25–34 (1987)CrossRefGoogle Scholar
- 51.Scharstein H.: Paths of carabid beetles walking in the absence of orienting stimuli and the time structure of their motor output. In: Alt, W., Hoffmann, G.(eds) Biological Motion. Lecture Notes in Biomathematics, vol. 89, Springer, Heidelberg (1990)Google Scholar
- 52.Schimansky-Geier L., Erdmann U., Komin N.: Advantages of hopping on a zig–zag course. Phys. A 351, 51–59 (2005)CrossRefGoogle Scholar
- 53.Soria M., Freon P., Chabanet P.: Schooling properties of an obligate and a facultative fish species. J. Fish Biol. 71, 1257–1269 (2007)CrossRefGoogle Scholar
- 54.Sfakiotakis M., Lane D.M., Davies J.B.C.: Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24, 237–252 (1999)CrossRefGoogle Scholar
- 55.Tourtellot M.K., Collins R.D., Bell W.J.: The problem of movelength and turn definition in analysis of orientation data. J. Theor. Biol 150, 287–297 (1991)CrossRefGoogle Scholar
- 56.Turchin P., Odendaal F.J., Rausher M.D.: Quantifying insect movement in the field. Environ. Entomol. 20, 955–963 (1991)Google Scholar
- 57.Turchin P.: Translating foraging movements in heterogeneous environments into the spatial distribution of foragers. Ecology 72, 1253–1256 (1991)CrossRefGoogle Scholar
- 58.Turchin P.: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Sinauer Associates, Sunderland (1998)Google Scholar
- 59.Uhlenbeck G.E., Ornstein L.S.: On the theory of Brownian motion. Phys. Rev. 36, 823–841 (1930)CrossRefGoogle Scholar
- 60.Umeda T., Inouye K.: Possible role of contact following in the generation of coherent motion of Dictyostelium cells. J. Theor. Biol 291, 301–308 (2002)CrossRefMathSciNetGoogle Scholar
- 61.Viscido S.V., Parrish J.K., Grünbaum D.: Factors influencing the structure and maintenance of fish schools. Ecol. Modell. 206, 153–165 (2007)CrossRefGoogle Scholar