Journal of Mathematical Biology

, Volume 58, Issue 3, pp 339–375 | Cite as

Spatial patterns in a discrete-time SIS patch model

Article

Abstract

How do spatial heterogeneity, habitat connectivity, and different movement rates among subpopulations combine to influence the observed spatial patterns of an infectious disease? To find out, we formulated and analyzed a discrete-time SIS patch model. Patch differences in local disease transmission and recovery rates characterize whether patches are low-risk or high-risk, and these differences collectively determine whether the spatial domain, or habitat, is low-risk or high-risk. In low-risk habitats, the disease persists only when the mobility of infected individuals lies below some threshold value, but for high-risk habitats, the disease always persists. When the disease does persist, then there exists an endemic equilibrium (EE) which is unique and positive everywhere. This EE tends to a spatially inhomogeneous disease-free equilibrium (DFE) as the mobility of susceptible individuals tends to zero. The limiting DFE is nonempty on all low-risk patches and it is empty on at least one high-risk patch. Sufficient conditions for the limiting DFE to be empty on other high-risk patches are given in terms of disease transmission and recovery rates, habitat connectivity, and the infected movement rate. These conditions are also illustrated using numerical examples.

Keywords

Spatial heterogeneity Dispersal Habitat connectivity Basic reproduction number Disease-free equilibrium Endemic equilibrium 

Mathematics Subject Classification (2000)

92D30 92D40 92D50 91D25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen L.J.S., Bolker B.M., Lou Y., Nevai A.L.: Asymptotic profile of the steady states for an SIS epidemic patch model. SIAM J. Appl. Math. 67, 1283–1309 (2007)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allen L.J.S., Bolker B.M., Lou Y., Nevai A.L.: Asymptotic profile of the steady states for an SIS epidemic reaction-diffusion model. Discr. Cont. Dyn. Sys. A. 21, 1–20 (2008)MATHMathSciNetGoogle Scholar
  3. 3.
    Allen L.J.S., Burgin A.: Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math. Biosci. 163, 1–33 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Allen L.J.S., Jones M.A., Martin C.F.: A discrete-time model with vaccination for a measles epidemic. Math. Biosci. 105, 111–131 (1991)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Allen L.J.S., Kirupaharan N., Wilson S.M.: SIS epidemic models with multiple pathogen strains. J. Differ. Equ. Appl. 10, 53–75 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Allen, L.J.S., van den Driessche, P.: The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl. (2008) (in press)Google Scholar
  7. 7.
    Arino J., Jordan R., van den Driessche P.: Quarantine in a multi-species epidemic model with spatial dynamics. Math. Biosci. 206, 46–60 (2007)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Caraco T., Duryea M., Gardner G., Maniatty W., Szymanski B.K.: Host spatial heterogeneity and extinction of an SIS epidemic. J. Theor. Biol. 192, 351–361 (1998)CrossRefGoogle Scholar
  9. 9.
    Carrillo C., Fife P.: Spatial effects in discrete generation population models. J. Math. Biol. 50, 161–188 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Castillo-Chavez C., Yakubu A.-A.: Dispersal, disease and life-history evolution. Math. Biosci. 173, 35–53 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Castillo-Chavez C., Yakubu A.-A.: Intraspecific competition, dispersal, and disease dynamics in discrete-time patchy environments. In: Castillo-Chavez, C., Blower, S., Driessche, P., Kirschner, D., Yakubu, A.-A. (eds) Mathematical Approaches for Emerging and Reemerging Infectious Diseases An Introduction, pp. 165–181. Springer, New York (2002)Google Scholar
  12. 12.
    Cushing, J.M.: An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, PA (1998)Google Scholar
  13. 13.
    Cushing J.M., Yicang Z.: The net reproductive value and stability in structured population models. Nat. Resour. Model. 8, 1–37 (1994)Google Scholar
  14. 14.
    de Jong M.C.M., Diekmann O., Heesterbeek J.A.P.: The computation of R 0 for discrete-time epidemic models with dynamic heterogeneity. Math. Biosci. 119, 97–114 (1994)MATHCrossRefGoogle Scholar
  15. 15.
    Dhirasakdanon T., Thieme H., van den Driessche P.: A sharp threshold for disease persistence in host metapopulations. J. Biol. Dyn. 1, 363–378 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Diekmann O., Heesterbeek J.A.P.: Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester (2000)Google Scholar
  17. 17.
    Diekmann O., Heesterbeek J.A.P., Metz J.A.J.: On the definition and the computation of the basic reproduction ratio \({\mathcal R_0}\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Doebeli M., Ruxton G.D.: Stabilization through pattern formation in metapopulations with long-range dispersal. Proc. R. Soc. Lond. B. 265, 1325–1332 (1998)CrossRefGoogle Scholar
  19. 19.
    Emmert K.E., Allen L.J.S.: Population persistence and extinction in a discrete-time, stage-structured epidemic model. J. Differ. Equ. Appl. 10, 1177–1199 (2004)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Gantmacher F.R.: The Theory of Matrices, vol. II. Chelsea, New York (1960)Google Scholar
  21. 21.
    Hsieh Y.-H., van den Driessche P., Wang L.: Impact of travel between patches for spatial spread of disease. Bull. Math. Biol. 69, 1355–1375 (2007)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lewis M.A., Rencławowicz J., van den Driessche P.: Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 68, 3–23 (2006)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Lewis M.A., Rencławowicz J., van den Driessche P., Wonham M.: A comparison of continuous and discrete-time West Nile Virus models. Bull. Math. Biol. 68, 491–509 (2006)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Li C.-K., Schneider H.: Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 44, 450–462 (2002)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Medlock J., Kot M.: Spreading disease: integro-differential equations old and new. Math. Biosci. 184, 201–222 (2003)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ortega J.M.: Matrix Theory: A Second Course. Plenum Press, New York (1987)MATHGoogle Scholar
  27. 27.
    Postnikov E.B., Sokolov I.M.: Continuum description of a contact infection spread in a SIR model. Math. Biosci. 208, 205–215 (2007)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Ruan S.: Spatial–temporal dynamics in nonlocal epidemiological models. In: Takeuchi, Y., Sato, K., Iwasa, Y. (eds) Mathematics for Life Science and Medicine, vol 2, pp. 97–122. Springer, New York (2007)Google Scholar
  29. 29.
    Smith, H.: Monotone Dynamical Systems, An introduction to the theory of competitive and cooperative systems. American Mathematical Society, Mathematical Surveys and Monographs (1995)Google Scholar
  30. 30.
    van den Driessche P., Watmough J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Wang M.-H., Kot M., Neubert M.G.: Integrodifference equations, Allee effects, and invasions. J. Math. Biol. 44, 150–168 (2002)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Yakubu A.-A., Castillo-Chavez C.: Interplay between local dynamics and dispersal in discrete-time metapopulation models. J. Theor. Biol. 218, 273–288 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsTexas Tech UniversityLubbockUSA
  2. 2.Department of MathematicsThe Ohio State UniversityColumbusUSA
  3. 3.Mathematical Biosciences InstituteThe Ohio State UniversityColumbusUSA

Personalised recommendations