Advertisement

Journal of Mathematical Biology

, Volume 57, Issue 5, pp 713–735 | Cite as

Stochastic properties of generalised Yule models, with biodiversity applications

  • Tanja Gernhard
  • Klaas Hartmann
  • Mike Steel
Article

Abstract

The Yule model is a widely used speciation model in evolutionary biology. Despite its simplicity many aspects of the Yule model have not been explored mathematically. In this paper, we formalise two analytic approaches for obtaining probability densities of individual branch lengths of phylogenetic trees generated by the Yule model. These methods are flexible and permit various aspects of the trees produced by Yule models to be investigated. One of our methods is applicable to a broader class of evolutionary processes, namely the Bellman–Harris models. Our methods have many practical applications including biodiversity and conservation related problems. In this setting the methods can be used to characterise the expected rate of biodiversity loss for Yule trees, as well as the expected gain of including the phylogeny in conservation management. We briefly explore these applications.

Keywords

Yule Phylogenetic diversity Tree Null model Biodiversity Extinction Bellman Harris 

Mathematics Subject Classification (2000)

92-08 60J80 05C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldous D.J.: Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Stat. Sci. 16(1), 23–34 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blum M., Francois O.: Which random processes describe the Tree of Life? A large-scale study of phylogenetic tree imbalance. Syst. Biol. 55(4), 685–691 (2006)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Crozier R.H.: Preserving the information content of species: Genetic diversity, phylogeny, and conservation worth. Annu. Rev. Ecol. Syst. 28, 243–268 (1997)CrossRefGoogle Scholar
  4. 4.
    Crump K.S., Mode C.J.: A general age-dependent branching process I. J. Math. Anal. Appl. 24, 494–508 (1968)zbMATHCrossRefGoogle Scholar
  5. 5.
    Crump K.S., Mode C.J.: A general age-dependent branching process II. J. Math. Anal. Appl. 25, 8–17 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Faith D.P.: Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992)CrossRefGoogle Scholar
  7. 7.
    Gernhard, T.: Stochastic models of speciation events in phylogenetic trees. Diplom Thesis, Technical University of Munich, Germany (2006)Google Scholar
  8. 8.
    Gernhard, T.: The conditioned reconstructed process. J. Theor. Biol. (2008, in press)Google Scholar
  9. 9.
    Gernhard T., Ford D., Vos R., Steel M.: Estimating the relative order of speciation or coalescence events on a given phylogeny. Evol. Bioinform. Online 2, 309–317 (2006)Google Scholar
  10. 10.
    Harding E.F.: The probabilities of rooted tree-shapes generated by random bifurcation. Adv. Appl. Probab. 3, 44–47 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hartmann, K., Mooers, A.O.: When should phylogenies guide conservation management? (in preparation)Google Scholar
  12. 12.
    Hartmann K., Steel M.: Phylogenetic diversity: from combinatorics to ecology. In: Gascuel, O., Steel, M.(eds) Reconstructing Evolution—New Mathematical and Computational Advances, Oxford University Press, New York (2007)Google Scholar
  13. 13.
    Hartmann, K., Gernhard, T., Wong, D.: Sampling trees from evolutionary models. Systematic Biology (submitted)Google Scholar
  14. 14.
    Jagers P.: Branching processes with biological applications. Wiley, New York (1975)zbMATHGoogle Scholar
  15. 15.
    McKenzie A., Steel M.: Distributions of cherries for two models of trees. Math. Biosci. 164(1), 81–92 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mooers A.Ø., Heard S.B.: Inferring evolutionary process from phylogenetic tree shape. Q. Rev. Biol. 72(1), 31–54 (1997)CrossRefGoogle Scholar
  17. 17.
    Mooers A.O., Heard S.B., Chrostowski E.: Evolutionary heritage as a metric for conservation. In: Purvis, A., Brooks, T., Gittleman, J.(eds) Phylogeny and Conservation, pp. 120–138. Cambridge University Press, Cambridge (2005)Google Scholar
  18. 18.
    Nee S., May R.M.: Extinction and the loss of evolutionary history. Science 278(5338), 692–694 (1997)CrossRefGoogle Scholar
  19. 19.
    Redding D., Hartmann K., Mimoto A., Bokal D., DeVos M., Mooers A.O.: The most “original species” often capture more phylogenetic diversity than expected. J. Theor. Biology, in press 251, 606–615 (2008)CrossRefGoogle Scholar
  20. 20.
    Sankaranarayanan G.: Branching Processes and its Estimation Theory. Wiley, New York (1989)zbMATHGoogle Scholar
  21. 21.
    Semple C., Steel M.: Phylogenetics. Oxford University Press, New York (2003)zbMATHGoogle Scholar
  22. 22.
    Steel M.: Tools to construct and study big trees: A mathematical perspective. In: Hodkinson T.R., Parnell J.A. (eds.) Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich Taxa. CRC Press, USA (2006)Google Scholar
  23. 23.
    Steel M., McKenzie A.: Properties of phylogenetic trees generated by Yule-type speciation models. Math. Biosci. 170, 91–112 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Walters C.J.: Adaptive Management of Renewable Resources. Macmillan, New York (1986)Google Scholar
  25. 25.
    Yule G.U.: A mathematical theory of evolution, based on the conclusions of Dr. J.C. Wllis, F.R.S. Philos. Trans. R. Soc. Lond. Ser. B 213, 21–87 (1924)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Kombinatorische GeometrieTechnische Universität MünchenMünchenGermany
  2. 2.Biomathematics Research CentreUniversity of CanterburyChristchurchNew Zealand
  3. 3.ICT Centre, CSIROHobartAustralia
  4. 4.Allan Wilson Centre for Molecular Ecology and Evolution, Biomathematics Research CentreUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations