Journal of Mathematical Biology

, Volume 57, Issue 3, pp 413–434 | Cite as

Continuous versus pulse harvesting for population models in constant and variable environment



We consider both autonomous and nonautonomous population models subject to either impulsive or continuous harvesting. It is demonstrated in the paper that the impulsive strategy can be as good as the continuous one, but cannot outperform it. We introduce a model, where certain harm to the population is incorporated in each harvesting event, and study it for the logistic and the Gompertz laws of growth. In this case, impulsive harvesting is not only the optimal strategy but is the only possible one.


Harvesting Impulsive equation Logistic model Periodic solutions Maximal sustainable yield By-catch mortality 

Mathematics Subject Classification (2000)

92D25 34A37 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark C.W. (1976). Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York MATHGoogle Scholar
  2. 2.
    Cooke K.L. and Witten M. (1986). One-dimensional linear and logistic harvesting models. Math. Model. 7: 301–340 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gao S.J., Chen L.S. and Sun L.H. (2005). Optimal pulse fishing policy in stage-structured models with birth pulses. Chaos Solutions Fractals 25(5): 1209–1219 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Tang S., Cheke R.A. and Xiao Y. (2006). Optimal impulsive harvesting on non-autonomous Beverton–Holt difference equations. Nonlinear Anal. Ser. A: Theory Methods 65: 2311–2341 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Xu C., Boyce M.S. and Daley D.J. (2005). Harvesting in seasonal environments. J. Math. Biol. 50: 663–682 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Zhang X., Shuai Z. and Wang K. (2003). Optimal impulsive harvesting policy for single population. Nonlinear Anal. Real World Appl. 4: 639–651 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Zhang Y., Xiu Z. and Chen L. (2006). Optimal impulsive harvesting of a single species with Gompertz law of growth. J. Biol. Syst. 14: 303–314 MATHCrossRefGoogle Scholar
  8. 8.
    Fan M. and Wang K. (1998). Optimal harvesting policy for single population with periodic coefficients. Math. Biosci. 152: 165–177 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Xiao Y., Cheng D. and Qin H. (2006). Optimal impulsive control in periodic ecosystems. Syst. Control Lett. 55: 556–565 MathSciNetGoogle Scholar
  10. 10.
    Angelova J. and Dishliev A. (2000). Optimization problems for one-impulsive models from population Dynamics. Nonlinear Anal. 39: 483–497 CrossRefMathSciNetGoogle Scholar
  11. 11.
    Braverman E., Israeli M., Averbuch A. and Vozovoi L. (1998). A fast 3-D Poisson solver of arbitrary order accuracy. J. Comput. Phys. 144: 109–136 CrossRefMathSciNetGoogle Scholar
  12. 12.
    Boyce M.S. and Daley D.J. (1980). Population tracking of fluctuating environments and natural selection for tracking ability. Am. Nat. 115: 480–491 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Chen L., Sun L. and Dong (2007). Optimal harvesting policies for periodic Gompertz systems. Nonlinear Anal. Real World Appl. 8: 572–578 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Berezansky L. and Braverman E. (2004). On impulsive Beverton–Holt difference equations and their applications. J. Differ. Equ. Appl. 10: 851–868 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Braverman E. (2005). On a discrete model of population dynamics with impulsive harvesting or recruitment. Nonlinear Anal. Ser. A: Theory Methods 63: e751–e759 CrossRefGoogle Scholar
  16. 16.
    Braverman E. and Kinzebulatov D. (2006). On linear perturbations of the Ricker model. Math. Biosci. 202: 323–339 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Schreiber A.J. (2001). Chaos and population disappearances in simple ecological models. J. Math. Biol. 42: 239–260 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Braverman, E., Mamdani, R.: On optimal impulsive sustainable harvesting, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14(S2) (suppl.), Adv Dynamical Syst., 112–116 (2007)Google Scholar
  19. 19.
    Artstein Z. (1993). Chattering limit for a model of harvesting in a rapidly changing environment. Appl. Math. Optim. 28: 133–147 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ludwig D. (1980). Harvesting strategies for a randomly fluctuating population. J. Cons. Int. Explor. Mer. 39: 168–174 Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
  2. 2.University of CalgaryCalgaryCanada

Personalised recommendations