Journal of Mathematical Biology

, Volume 57, Issue 2, pp 243–264 | Cite as

Stable long-period cycling and complex dynamics in a single-locus fertility model with genomic imprinting

  • Jeremy Van CleveEmail author
  • Marcus W. Feldman


Although long-period population size cycles and chaotic fluctuations in abundance are common in ecological models, such dynamics are uncommon in simple population-genetic models where convergence to a fixed equilibrium is most typical. When genotype-frequency cycling does occur, it is most often due to frequency-dependent selection that results from individual or species interactions. In this paper, we demonstrate that fertility selection and genomic imprinting are sufficient to generate a Hopf bifurcation and complex genotype-frequency cycling in a single-locus population-genetic model. Previous studies have shown that on its own, fertility selection can yield stable two-cycles but not long-period cycling characteristic of a Hopf bifurcation. Genomic imprinting, a molecular mechanism by which the expression of an allele depends on the sex of the donating parent, allows fitness matrices to be nonsymmetric, and this additional flexibility is crucial to the complex dynamics we observe in this fertility selection model. Additionally, we find under certain conditions that stable oscillations and a stable equilibrium point can coexist. These dynamics are characteristic of a Chenciner (generalized Hopf) bifurcation. We believe this model to be the simplest population-genetic model with such dynamics.


Population genetics Fertility selection Generalized Hopf bifurcation Gene frequency cycling Frequency dependence 

Mathematics Subject Classification (2000)

92D10 92D15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akin E. (1982). Cycling in simple genetic systems. J. Math. Biol. 13(3): 305–324 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Altenberg L. (1991). Chaos from linear frequency-dependent selection. Am. Nat. 138(1): 51–68 CrossRefGoogle Scholar
  3. 3.
    Andreasen V. and Christiansen F.B. (1995). Slow coevolution of a viral pathogen and its diploid host. Philos. Trans. R. Soc. Lond. B Biol. Sci. 348(1325): 341–354 CrossRefGoogle Scholar
  4. 4.
    Arrowsmith D.K. and Place C.M. (1990). An Introduction to Dynamical Systems. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  5. 5.
    Asmussen M.A. (1979). Regular and chaotic cycling in models of ecological genetics. Theor. Popul. Biol. 16(2): 172–190 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Asmussen M.A. and Feldman M.W. (1977). Density dependent selection 1: A stable feasible equilibrium may not be attainable. J. Theor. Biol. 64(4): 603–618 CrossRefGoogle Scholar
  7. 7.
    Bodmer W.F. (1965). Differential fertility in population genetics models. Genetics 51(3): 411–424 Google Scholar
  8. 8.
    Costantino R.F., Desharnais R.A., Cushing J.M. and Dennis B. (1997). Chaotic dynamics in an insect population. Science 275(5298): 389–391 CrossRefGoogle Scholar
  9. 9.
    Cressman R. (1988). Frequency-dependent viability selection (a single-locus, multi-phenotype model). J. Theor. Biol. 130(2): 147–165 CrossRefMathSciNetGoogle Scholar
  10. 10.
    Dennis B., Desharnais R.A., Cushing J.M., Henson S.M. and Costantino R.F. (2001). Estimating chaos and complex dynamics in an insect population. Ecol. Monogr. 71(2): 277–303 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Doebeli M. and de Jong G. (1998). A simple genetic model with non-equilibrium dynamics. J. Math. Biol. 36(6): 550–556 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ellner S. and Turchin P. (1995). Chaos in a noisy world: New methods and evidence from time-series analysis. Am. Nat. 145(3): 343–375 CrossRefGoogle Scholar
  13. 13.
    Ellner S.P. and Turchin P. (2005). When can noise induce chaos and why does it matter: a critique. Oikos 111(3): 620–631 CrossRefGoogle Scholar
  14. 14.
    Feldman M.W., Christiansen F.B. and Liberman U. (1983). On some models of fertility selection. Genetics 105(4): 1003–1010 Google Scholar
  15. 15.
    Gavrilets S. (1998). One-locus two-allele models with maternal (parental) selection. Genetics 149(2): 1147–1152 Google Scholar
  16. 16.
    Gavrilets S. and Hastings A. (1995). Intermittency and transient chaos from simple frequency-dependent selection. Proc. R. Soc. Lond. B Biol. Sci. 261(1361): 233–238 CrossRefGoogle Scholar
  17. 17.
    Govaerts W., Kuznetsov Y.A. and Dhooge A. (2005). Numerical continuation of bifurcations of limit cycles in MATLAB. SIAM J. Sci. Comput. 27(1): 231–252 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol 42. Springer, New York (1983)Google Scholar
  19. 19.
    Hadeler K.P. and Glas D. (1983). Quasimonotone systems and convergence to equilibrium in a population genetic model. J. Math. Anal. Appl. 95(2): 297–303 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hadeler K.P. and Liberman U. (1975). Selection model with fertility differences. J. Math. Biol. 2(1): 19–32 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hastings A. (1981). Stable cycling in discrete-time genetic models. Proc. Natl. Acad. Sci. U. S. A. 78(11): 7224–7225 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hofbauer J. and Iooss G. (1984). A Hopf-bifurcation theorem for difference-equations approximating a differential-equation. Monatsh. Math. 98(2): 99–113 CrossRefMathSciNetGoogle Scholar
  23. 23.
    Iwasa Y. and Pomiankowski A. (1995). Continual change in mate preferences. Nature 377(6548): 420–422 CrossRefGoogle Scholar
  24. 24.
    Josić K. (1997). Local bifurcations in the symmetric model of selection with fertility differences. J. Theor. Biol. 189(3): 291–295 CrossRefGoogle Scholar
  25. 25.
    Karlin S. and Lessard S. (1986). Theoretical Studies on Sex Ratio Evolution. Princeton University Press, Princeton Google Scholar
  26. 26.
    Kingman J.F.C. (1961). A matrix inequality. Quart. J. Math. 12: 78–80 zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Koth M. and Kemler F. (1986). A one locus-two allele selection model admitting stable limit cycles. J. Theor. Biol. 122(3): 263–268 CrossRefMathSciNetGoogle Scholar
  28. 28.
    Kuznetsov Y.A.: Elements Of Applied Bifurcation Theory, Appl. Math. Sci., vol. 112, 3rd edn. Springer, New York (2004)Google Scholar
  29. 29.
    Li C. and Chen G. (2003). An improved version of the marotto theorem. Chaos Solitons Fractals 18: 69–77 zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Li T.Y. and Yorke J.A. (1975). Period three implies chaos. Am. Math. Monthly 82(10): 985–992 zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Marotto F.R. (1978). Snap-back repellers imply chaos in R n. J. Math. Anal. Appl. 63(1): 199–223 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    May R.M. (1975). Biological populations obeying difference equations: stable points, stable cycles and chaos. J. Theor. Biol. 51(2): 511–524 CrossRefGoogle Scholar
  33. 33.
    May R.M. (1976). Simple mathematical models with very complicated dynamics. Nature 261(5560): 459–467 CrossRefGoogle Scholar
  34. 34.
    May R.M. and Anderson R.M. (1983). Epidemiology and genetics in the coevolution of parasites and hosts. Proc. R. Soc. Lond. B Biol. Sci. 219(1216): 281–313 zbMATHCrossRefGoogle Scholar
  35. 35.
    Maynard Smith J. and Hofbauer J. (1987). The battle of the sexes a genetic model with limit cycle behavior. Theor. Popul. Biol. 32(1): 1–14 zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Pearce G.P. and Spencer H.G. (1992). Population genetic models of genomic imprinting. Genetics 130(4): 899–907 Google Scholar
  37. 37.
    Penrose L.S. (1949). The meaning of fitness in human populations. Ann. Eugen. 14(4): 301–304 Google Scholar
  38. 38.
    Pollak E. (1978). With selection for fecundity the mean fitness does not necessarily increase. Genetics 90(2): 383–389 MathSciNetGoogle Scholar
  39. 39.
    Reik W. and Walter J. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2(1): 21–32 CrossRefGoogle Scholar
  40. 40.
    Scheuer P. and Mandel S. (1959). An inequality in population genetics. Heredity 13: 519–524 CrossRefGoogle Scholar
  41. 41.
    Selgrade J.F. and Namkoong G. (1984). Dynamical behavior of differential equation models of frequency and density dependent populations. J. Math. Biol. 19(1): 133–146 zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Selgrade J.F. and Ziehe M. (1987). Convergence to equilibrium in a genetic model with differential viability between the sexes. J. Math. Biol. 25(5): 477–490 zbMATHMathSciNetGoogle Scholar
  43. 43.
    Spencer H.G. (2003). Further properties of Gavrilets’ one-locus two-allele model of maternal selection. Genetics 164(4): 1689–1692 Google Scholar
  44. 44.
    Spencer H.G., Feldman M.W. and Clark A.G. (1998). Genetic conflicts, multiple paternity and the evolution of genomic imprinting. Genetics 148(2): 893–904 Google Scholar
  45. 45.
    Spencer H.G., Dorn T. and LoFaro T. (2006). Population models of genomic imprinting. II. Maternal and fertility selection. Genetics 173(4): 2391–2398 CrossRefGoogle Scholar
  46. 46.
    Wood A.J. and Oakey R.J. (2006). Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet. 2(11): e147CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations