Journal of Mathematical Biology

, Volume 57, Issue 1, pp 139–159 | Cite as

Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis

Article

Abstract

Mechanistic home range models are important tools in modeling animal dynamics in spatially complex environments. We introduce a class of stochastic models for animal movement in a habitat of varying preference. Such models interpolate between spatially implicit resource selection analysis (RSA) and advection-diffusion models, possessing these two models as limiting cases. We find a closed-form solution for the steady-state (equilibrium) probability distribution u* using a factorization of the redistribution operator into symmetric and diagonal parts. How space use is controlled by the habitat preference function w depends on the characteristic width of the animals’ redistribution kernel: when the redistribution kernel is wide relative to variation in w, u* ∝ w, whereas when it is narrow relative to variation in w, u* ∝ w2. In addition, we analyze the behavior at discontinuities in w which occur at habitat type boundaries, and simulate the dynamics of space use given two-dimensional prey-availability data, exploring the effect of the redistribution kernel width. Our factorization allows such numerical simulations to be done extremely fast; we expect this to aid the computationally intensive task of model parameter fitting and inverse modeling.

Keywords

Mechanistic Home range Advection–diffusion Resource selection analysis Markov Space use 

Mathematics Subject Classification (2000)

92D50 35K15 65C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, S.M., Manly, B.F.J., McDonald, L.L., Garner, G.W.: Assessing habitat selection when availability changes. Ecology 77, 215–227 (1996)CrossRefGoogle Scholar
  2. 2.
    Boyce, M.S., Mao, J.S., Merrill, E.M., Fortin, D.: Scale and heterogeneity in habitat selection by elk in Yellowstone National Park. Écoscience 10, 421–431 (2002)Google Scholar
  3. 3.
    Boyce, M.S., McDonald, L.L.: Relating populations to habitats using resource selection functions. Trends Ecol. Evolut. 14, 268–272 (1999)CrossRefGoogle Scholar
  4. 4.
    Compton, B.W., Rhymer, J.M., McCollough, M.: Habitat selection by wood turtles (clemmys insculpta): and application of paired logistic regression. Ecology 83, 833–843 (2002)Google Scholar
  5. 5.
    Forester, J.D., Ives, A.R., Turner, M.G., Anderson, D.P., Fortin, D., Beyer, H.L., Smith, D.W., Boyce, M.S.: State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park. Ecol. Monogr. 77, 285– (2007)CrossRefGoogle Scholar
  6. 6.
    Fortin, D., Beyer, H.L., Boyce, M.S., Smith, D.W., Duchesne, T., Mao, J.: Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86, 1320–1330 (2005)CrossRefGoogle Scholar
  7. 7.
    Gardiner, C.W.: Handbook of stochastic methods for physics, chemistry, and the natural sciences, 3rd edn. Springer Series in Synergetics, vol. 13. Springer, Berlin (2004)Google Scholar
  8. 8.
    Giuggioli, L., Abramson, G., Kenkre, V.M., Parmenter, R.R., Yates, T.L.: Theory of home range estimation from displacement measurements of animal populations. J. Theor. Biol. 240, 126–135 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Johnson, C.J., Parker, K.L., Heard, D.C., Gillingham, M.P.: A multiscale behavioral approach to understanding the movements of woodland caribou. Ecol. Appl. 12, 1840–1860 (2002)CrossRefGoogle Scholar
  10. 10.
    Johnson, D.H.: The comparison of usage and availability measurementts for evaluating resource preference. Ecology 61, 65–71 (1980)CrossRefGoogle Scholar
  11. 11.
    Kareiva, P.: Experimental and mathematical analyses of herbivore movement: Quantifying the influence of plant spacing and quality on foraging discrimination. Ecol. Monogr. 52, 261–282 (1982)CrossRefGoogle Scholar
  12. 12.
    Lewis, M.A., White, K.A.J., Murray, J.D.: Analysis of a model for wolf territories. J. Math. Biol. 35, 749–774 (1997)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Manly, B.F.J., McDonald, L.L., Thomas, D.L., L., M.T., Erickson, W.P.: Resouce selection by animals: statistical design and analysis for field studies, 2nd edn. Kluwer, DordrechtGoogle Scholar
  14. 14.
    Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, London (1993)MATHGoogle Scholar
  15. 15.
    Moorcroft, P.R.: Territoriality and carnivore home ranges. Ph.D. thesis, Dept. of Ecology and Evolutionary Biology, Princeton University (1997)Google Scholar
  16. 16.
    Moorcroft, P.R., Barnett, A.H.: Mechanistic home range models and resource selection analysis: a reconciliation and unification. Ecology (2007) (in press) arXiv:q-bio/0612008Google Scholar
  17. 17.
    Moorcroft, P.R., Lewis, M.A.: Mechanistic home range analysis. Monographs in population biology. Princeton University Press, Princeton (2006)Google Scholar
  18. 18.
    Moorcroft, P.R., Lewis, M.A., Crabtree, R.L.: Mechanistic home range models predict spatial patterns and dynamics of coyote territories in yellowstone. Proc. R. Soc. Ser. B 273, 1651–1659 (2006)CrossRefGoogle Scholar
  19. 19.
    Okubo, A.: Diffusion and ecological problems. Springer, Heidelberg (1980)MATHGoogle Scholar
  20. 20.
    Othmer, H., Dunbar, S.R., Alt, W.: Models of dispersion in biological systems. J. Math. Biol. 26, 263–298 (1988)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Patlak, C.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C. Cambridge University Press, Cambridge (2002)Google Scholar
  23. 23.
    Turchin, P.: Translating foraging movements in heterogeneous environments into the spatial distribution of foragers. Ecology 72, 1253–1266 (1991)CrossRefGoogle Scholar
  24. 24.
    White, K.A.J., Lewis, M.A., Murray, J.D.: A model for wolf-pack territory formation and maintenance. J. Theor. Biol. 178, 26–43 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of MathematicsDartmouth CollegeHanoverUSA
  2. 2.OEB DepartmentHarvard UniversityCambridgeUSA

Personalised recommendations