Journal of Mathematical Biology

, Volume 56, Issue 5, pp 673–742 | Cite as

Adaptive dynamics for physiologically structured population models

  • Michel DurinxEmail author
  • J. A. J. (Hans) Metz
  • Géza Meszéna


We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309–338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579–612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka–Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N  =  1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions.


Adaptive dynamics Physiologically structured populations Multivariate evolutionarily singular strategies Multitype branching processes Evolutionary modelling 

Mathematics Subject Classification (2000)

70K45 92D15 92D25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Athreya K. (1992). Rates of decay for the survival probability of a mutant gene. J. Math. Biol. 30: 577–581 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Athreya K. (1993). Rates of decay for the survival probability of a mutant gene. II. The multitype case. J. Math. Biol. 32: 45–53 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beccari, C.: Tutorial: typesetting maths for science and tech according to ISO 31/XI. Technical report, T E X Users Group (1997)Google Scholar
  4. 4.
    Caswell, H.: Population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates, Sunderland (2001)Google Scholar
  5. 5.
    Champagnat, N.: Convergence of adaptive dynamics n-morphic jump processes to the canonical equation and degenerate diffusion approximation. Prépublication de l’Université de Nanterre (Paris X) no. 03/7 (2003)Google Scholar
  6. 6.
    Champagnat, N.: Etude mathématique de modèles stochastiques d’évolution issus de la théorie écologique des dynamiques adaptives. PhD thesis, Paris X, Paris (France) (2004)Google Scholar
  7. 7.
    Champagnat N. (2006). A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Appl. 116: 1127–1160 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Champagnat N., Ferrière R. and Ben Arous G. (2001). The canonical equation of adaptive dynamics: a mathematical view. Selection 2: 71–81 Google Scholar
  9. 9.
    Champagnat N., Ferrière R. and Méléard S. (2006). Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol. 69: 297–321 zbMATHCrossRefGoogle Scholar
  10. 10.
    Christiansen F. (1991). On conditions for evolutionary stability for a continuously varying character. Am. Nat. 138: 37–50 CrossRefGoogle Scholar
  11. 11.
    Christiansen F. and Loeschke V. (1987). Evolution and intraspecific competition. III. One-locus theory for small additive gene effects and multidimensional resource qualities. Theor. Popul. Biol. 31: 33–46 zbMATHCrossRefGoogle Scholar
  12. 12.
    Cressman R. and Hofbauer J. (2005). Measure dynamics on a one-dimensional continuous trait space: Theoretical foundations for adaptive dynamics. Theor. Popul. Biol. 67: 47–59 zbMATHCrossRefGoogle Scholar
  13. 13.
    Dercole, F.: Evolutionary dynamics through bifurcation analysis: methods and applications. PhD thesis, Department of Electronics and Information, Politecnico di Milano, Milano (Italy) (2002)Google Scholar
  14. 14.
    Dercole, F., Rinaldi, S.: Analysis of evolutionary processes: the adaptive dynamics approach and its applications. Princeton University Press, Princeton (in press)Google Scholar
  15. 15.
    Dieckmann U. and Law R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34: 579–612 zbMATHMathSciNetGoogle Scholar
  16. 16.
    Dieckmann U., Marrow P. and Law R. (1995). Evolutionary cycling in predator–prey interactions: population dynamics and the red queen. J. Theor. Biol. 176: 91–102 CrossRefGoogle Scholar
  17. 17.
    Dieckmann U. and Metz J. (2006). Surprising evolutionary predictions from enhanced ecological realism. Theor. Popul. Biol. 69: 263–281 zbMATHCrossRefGoogle Scholar
  18. 18.
    Diekmann O. (2004). A beginner’s guide to adaptive dynamics. Math. Model. Popul. Dyn. 63: 47–84 MathSciNetGoogle Scholar
  19. 19.
    Diekmann, O., Getto, P., Gyllenberg, M.: Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. SIAM J. Math. Anal. (in press)Google Scholar
  20. 20.
    Diekmann O., Gyllenberg M., Huang H., Kirkilionis M., Metz J. and Thieme H. (2001). On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math. Biol. 43: 157–189 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Diekmann O., Gyllenberg M. and Metz J. (2003). Steady state analysis of structured population models. Theor. Popul. Biol. 63: 309–338 zbMATHCrossRefGoogle Scholar
  22. 22.
    Eshel I. (1981). On the survival probability of a slightly advantageous mutant gene with a general distribution of progeny size—a branching process model. J. Math. Biol. 12: 355–362 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Eshel I. (1984). On the survival probability of a slightly advantageous mutant gene in a multitype population: a multidimensional branching process model. J. Math. Biol. 19: 201–209 zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Ewens W. (1969). Population Genetics. Methuen, London zbMATHGoogle Scholar
  25. 25.
    Geritz S. (2005). Resident-invader dynamics and the coexistence of similar strategies. J. Math. Biol. 50: 67–82 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Geritz S., Gyllenberg M., Jacobs F. and Parvinen K. (2002). Invasion dynamics and attractor inheritance. J. Math. Biol. 44: 548–560 zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Geritz S., Kisdi E., Meszéna G. and Metz J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 35–57 CrossRefGoogle Scholar
  28. 28.
    Geritz S., Metz J. and van der Meijden E. (1999). Evolutionary dynamics of seed size and seedling competitive ability. Theor. Popul. Biol. 55: 324–343 zbMATHCrossRefGoogle Scholar
  29. 29.
    Getto, P.: On some quasilinear structured population models. Thesis, Utrecht University, Utrecht (the Netherlands) (2005)Google Scholar
  30. 30.
    Gillespie D. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22: 403–434 CrossRefMathSciNetGoogle Scholar
  31. 31.
    Greiner G., Heesterbeek J. and Metz J. (1994). A singular perturbation theorem for evolution equations and time-scale arguments for structured population models. Can. Appl. Math. Q. 2: 435–459 zbMATHMathSciNetGoogle Scholar
  32. 32.
    Haccou P., Jagers P. and Vatutin V. (2005). Branching Processes—Variation, Growth, and Extinction of Populations. Cambridge Studies in Adaptive Dynamics. Cambridge University Press, Cambridge Google Scholar
  33. 33.
    Haldane J. (1927). A mathematical theory of natural and artificial selection. v. selection and mutation. Proc. Camb. Philos. Soc. 23: 838–844 CrossRefzbMATHGoogle Scholar
  34. 34.
    Hofbauer J. and Sigmund K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  35. 35.
    Hoppe F. (1992). Asymptotic rates of growth of the extinction probability of a mutant gene. J. Math. Biol. 30: 547–566 zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Kendall D. (1948). On the generalized “birth-and-death” process. Ann. Math. Stat. 19: 1–15 CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Kondrashov A. and Turelli M. (1992). Deleterious mutations, apparent stabilizing selection and the maintenance of quantitative variation. Genetics 132: 603–618 Google Scholar
  38. 38.
    Lande R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33: 402–416 CrossRefGoogle Scholar
  39. 39.
    Leimar O. (2001). Evolutionary change and darwinian demons. Selection 2(1–2): 65–72 Google Scholar
  40. 40.
    Leimar O. (2005). The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching. Am. Nat. 165: 669–681 CrossRefGoogle Scholar
  41. 41.
    Leimar, O.: Multidimensional convergence stability and the canonical adaptive dynamics. In: Dieckmann, U., Metz, J.A.J. (eds.) Elements of Adaptive Dynamics. Cambridge Studies in Adaptive Dynamics. Cambridge University Press, Cambridge (UK) (to appear)Google Scholar
  42. 42.
    Levin S. (1970). Community equilibria and stability and an extension of the competitive exclusion principle. Am. Nat. 104: 413–423 CrossRefGoogle Scholar
  43. 43.
    Lush J. (1937). Animal Breeding Plans. Iowa State College Press, Ames Google Scholar
  44. 44.
    Magnus J. and Neudecker H. (1988). Matrix Differential Calculus with applications in Statistics and Econometrics. Wiley, New York zbMATHGoogle Scholar
  45. 45.
    Meszéna G., Gyllenberg M., Jacobs F. and Metz J. (2005). Link between population dynamics and dynamics of darwinian evolution. Phys. Rev. Lett. 95(078105): 1–4 Google Scholar
  46. 46.
    Meszéna G., Gyllenberg M., Pásztor L. and Metz J. (2006). Competitive exclusion and limiting similarity: a unified theory. Theor. Popul. Biol. 69: 68–87 zbMATHCrossRefGoogle Scholar
  47. 47.
    Meszéna, G., Metz, J.: Species diversity and population regulation: the importance of environmental feedback dimensionality. IIASA Interim Report IR-99-045 (1999)Google Scholar
  48. 48.
    Metz J. and Diekmann O. (1986). The Dynamics of Physiologically Structured Populations, volume 68 of Lecture Notes in Biomathematics. Springer, Berlin Google Scholar
  49. 49.
    Metz J., Geritz S., Meszéna G., Jacobs F. and Van Heerwaarden J. (1996). Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: Van Strien, S.J. and Verduyn Lunel, S.M. (eds) Stochastic and Spatial Structures of Dynamical Systems, volume 45 of KNAW Symposium Lectures, Section Science, First Series, pp 183–231. North-Holland, Amsterdam Google Scholar
  50. 50.
    Metz J., Nisbet R. and Geritz S. (1992). How should we define fitness for general ecological scenarios?. Trends Ecol. Evol. 7: 198–202 CrossRefGoogle Scholar
  51. 51.
    Mollison, D.: The structure of epidemic models. In: Epidemic Models: their Structure and Relation to Data, pp. 27–28. Cambridge University Press, Cambridge (1995)Google Scholar
  52. 52.
    Pigliucci M. (2006). Genetic variance–covariance matrices: a critique of the evolutionary quantitative genetics research program. Biol. Philos. 21: 1–23 CrossRefGoogle Scholar
  53. 53.
    Schneider K. (2006). A multilocus-multiallele analysis of frequency-dependent selection induced by intraspecific competition. J. Math. Biol. 52: 483–523 zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Turelli M. (1984). Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theor. Popul. Biol. 25: 138–193 zbMATHCrossRefGoogle Scholar
  55. 55.
    van Kampen N. (1981). Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam zbMATHGoogle Scholar
  56. 56.
    Vukics A., Asbóth J. and Meszéna G. (2003). Speciation in multidimensional evolutionary space. Phys. Rev. E 68(041903): 1–10 Google Scholar
  57. 57.
    Zhang X. and Hill W. (2005). Genetic variability under mutation selection balance. Trends Ecol. Evol. 20: 468–470 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Michel Durinx
    • 1
    Email author
  • J. A. J. (Hans) Metz
    • 1
    • 2
  • Géza Meszéna
    • 3
  1. 1.Institute of BiologyLeiden UniversityLeidenThe Netherlands
  2. 2.Evolution and Ecology ProgramInternational Institute for Applied Systems AnalysisLaxenburgAustria
  3. 3.Department of Biological PhysicsEötvös UniversityBudapestHungary

Personalised recommendations