Journal of Mathematical Biology

, Volume 56, Issue 3, pp 293–310

# SIR dynamics in random networks with heterogeneous connectivity

• Erik Volz
Article

## Abstract

Random networks with specified degree distributions have been proposed as realistic models of population structure, yet the problem of dynamically modeling SIR-type epidemics in random networks remains complex. I resolve this dilemma by showing how the SIR dynamics can be modeled with a system of three nonlinear ODE’s. The method makes use of the probability generating function (PGF) formalism for representing the degree distribution of a random network and makes use of network-centric quantities such as the number of edges in a well-defined category rather than node-centric quantities such as the number of infecteds or susceptibles. The PGF provides a simple means of translating between network and node-centric variables and determining the epidemic incidence at any time. The theory also provides a simple means of tracking the evolution of the degree distribution among susceptibles or infecteds. The equations are used to demonstrate the dramatic effects that the degree distribution plays on the final size of an epidemic as well as the speed with which it spreads through the population. Power law degree distributions are observed to generate an almost immediate expansion phase yet have a smaller final size compared to homogeneous degree distributions such as the Poisson. The equations are compared to stochastic simulations, which show good agreement with the theory. Finally, the dynamic equations provide an alternative way of determining the epidemic threshold where large-scale epidemics are expected to occur, and below which epidemic behavior is limited to finite-sized outbreaks.

## Keywords

Epidemic disease SIR Networks Degree distribution

92D30 92D25

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Anderson R.M., May R.M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford Google Scholar
2. 2.
Andersson H. (1999). Epidemic models and social networks. Math. Sci. 24: 128–147
3. 3.
Andersson H., Britton T. (2000). Stochastic Epidemic Models and their Statistical Analysis. Springer, Heidelberg
4. 4.
Athreya K.B., Ney P. (1972). Branching Processes. Springer, New York
5. 5.
Barthelemy M., Barrat A., Pastor-Satorras R., Vespignani A. (2005). Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J. Theor. Biol. 235: 275–288
6. 6.
Bauch C.T. (2002). A versatile ODE approximation to a network model for the spread of sexually transmitted diseases. J. Math. Biol. 45(5): 375–395
7. 7.
Boguna M., Pastor-Satorras R., Vespignani A. (2003). Epidemic spreading in complex networks with degree correlations. In: Rubi, J.M. (eds) Statistical Mechanics of Complex Networks, Berlin, pp. Springer, Heidelberg Google Scholar
8. 8.
Dezso, Z., Barabasi, A.L.: Halting viruses in scale-free networks. Phys. Rev. E 65, 055103(R) (2002)Google Scholar
9. 9.
Diekmann O., Heesterbeek J.A.P. (2000). Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation. Wiley, Chichester Google Scholar
10. 10.
Durrett R. (2007). Random Graph Dynamics. Cambridge University Press, New York
11. 11.
Eames T.D., Keeling M.J. (2002). Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. PNAS 99: 13330–13335
12. 12.
Eubank S., Guclu H., Anil-Kunar V.S., Marathe M.V., Srinivasan A., Toroczkai Z., Wang N. (2005). Modelling disease outbreaks in realistic social networks. Nature 429: 180–184
13. 13.
Gupta S., Anderson R.M., May R.M. (1989). Networks of sexual contacts: implications for the pattern of spread of hiv. AIDS 3: 807–817
14. 14.
Halloran M.E., Longini I., Nizam A., Yang Y. (2005). Containging bioterrorist smallpox. Science 298: 1428
15. 15.
Harris T.E. (1963). The Theory of Branching Processes. Springer, Berlin
16. 16.
Kaplan E.H., Craft D.L., Wein L.M. (2002). Emergency response to a smallpox attach: the case for mass vaccination. PNAS USA 99: 10935
17. 17.
Keeling M.J. (1999). The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. B Biol. Sci. 266(1421): 859–859
18. 18.
Liljeros F., Edling C.R., Amaral L.A.N., Stanley H.E., Aberg Y. (2001). The web of human sexual contacts. Nature 411: 907–908
19. 19.
Meyers L.A., Pourbohloul B., Newman M.E.J., Skowronski D.M., Brun-ham R.C. (2005). Network theory and sars: predicting outbreak diversity. J. Theor. Biol. 232: 71–81
20. 20.
Meyers L.A., Pourbohloul B., Newman M.E.J., Skowronski D.M., Brunham R.C. (2005). Network theory and SARS: predicting outbreak diversity. J. Theor. Biol. 232(1): 71–81
21. 21.
Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: Uniform generation of random graphs with arbitrary degree sequences. Preprint cond-mat/0312028 (2003)Google Scholar
22. 22.
Molloy M., Reed B. (1995). A critical point for random graphs with a given degree sequence. Random Struct. Algor. 6: 161
23. 23.
Molloy M., Reed B. (1998). The size of the giant component of a random graph with a given degree sequence. Comb. Probab. Comput. 7: 295–305
24. 24.
Newman M.E.J. (2002). The spread of epidemic disease on networks. Phys. Rev. E 66: 016128
25. 25.
Newman M.E.J., Barabási A.L., Watts D.J. (2006). The Structure and Dynamics of Networks. Princeton University Press, Google Scholar
26. 26.
Newman M.E.J., Watts D.J., Strogatz S.H. (2002). Random graph models of social networks. PNAS USA 99: 2566–2572
27. 27.
Pastor-Satorras R., Vespignani A. (2001). Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86: 3200–3203
28. 28.
Pastor-Satorras R., Vespignani A. (2001). Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63: 066117
29. 29.
Pastor-Satorras R., Vespignani A. (2002). Handbook of Graphs and Networks: From the Genome to the Internet. chapter Epidemics and immunization in scale-free networks. Wiley-VCH, Berlin Google Scholar
30. 30.
Saramki J., Kaski K. (2005). Modelling development of epidemics with dynamic small-world networks. J. Theor. Biol. 234: 413–421
31. 31.
Strogatz S.H. (2001). Exploring complex networks. Nature 410: 268–276
32. 32.
Veliov V.M. (2005). On the effect of population heterogeneity on dynamics of epidemic diseases. J. Math. Biol. 51: 123–143
33. 33.
Warren C.P., Sander L.M., Sokolov I., Simon C., Koopman J. (2002). Percolation on disordered networks as a model for epidemics. Math. Biosci. 180: 293–305
34. 34.
Wilf H.S. (1994). Generatingfunctionology, 2nd edn. Academic, Boston