Journal of Mathematical Biology

, Volume 56, Issue 3, pp 293–310 | Cite as

SIR dynamics in random networks with heterogeneous connectivity

  • Erik Volz


Random networks with specified degree distributions have been proposed as realistic models of population structure, yet the problem of dynamically modeling SIR-type epidemics in random networks remains complex. I resolve this dilemma by showing how the SIR dynamics can be modeled with a system of three nonlinear ODE’s. The method makes use of the probability generating function (PGF) formalism for representing the degree distribution of a random network and makes use of network-centric quantities such as the number of edges in a well-defined category rather than node-centric quantities such as the number of infecteds or susceptibles. The PGF provides a simple means of translating between network and node-centric variables and determining the epidemic incidence at any time. The theory also provides a simple means of tracking the evolution of the degree distribution among susceptibles or infecteds. The equations are used to demonstrate the dramatic effects that the degree distribution plays on the final size of an epidemic as well as the speed with which it spreads through the population. Power law degree distributions are observed to generate an almost immediate expansion phase yet have a smaller final size compared to homogeneous degree distributions such as the Poisson. The equations are compared to stochastic simulations, which show good agreement with the theory. Finally, the dynamic equations provide an alternative way of determining the epidemic threshold where large-scale epidemics are expected to occur, and below which epidemic behavior is limited to finite-sized outbreaks.


Epidemic disease SIR Networks Degree distribution 

Mathematics Subject Classification (2000)

92D30 92D25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson R.M., May R.M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford Google Scholar
  2. 2.
    Andersson H. (1999). Epidemic models and social networks. Math. Sci. 24: 128–147 zbMATHMathSciNetGoogle Scholar
  3. 3.
    Andersson H., Britton T. (2000). Stochastic Epidemic Models and their Statistical Analysis. Springer, Heidelberg zbMATHGoogle Scholar
  4. 4.
    Athreya K.B., Ney P. (1972). Branching Processes. Springer, New York zbMATHGoogle Scholar
  5. 5.
    Barthelemy M., Barrat A., Pastor-Satorras R., Vespignani A. (2005). Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J. Theor. Biol. 235: 275–288 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bauch C.T. (2002). A versatile ODE approximation to a network model for the spread of sexually transmitted diseases. J. Math. Biol. 45(5): 375–395 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boguna M., Pastor-Satorras R., Vespignani A. (2003). Epidemic spreading in complex networks with degree correlations. In: Rubi, J.M. (eds) Statistical Mechanics of Complex Networks, Berlin, pp. Springer, Heidelberg Google Scholar
  8. 8.
    Dezso, Z., Barabasi, A.L.: Halting viruses in scale-free networks. Phys. Rev. E 65, 055103(R) (2002)Google Scholar
  9. 9.
    Diekmann O., Heesterbeek J.A.P. (2000). Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation. Wiley, Chichester Google Scholar
  10. 10.
    Durrett R. (2007). Random Graph Dynamics. Cambridge University Press, New York zbMATHGoogle Scholar
  11. 11.
    Eames T.D., Keeling M.J. (2002). Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. PNAS 99: 13330–13335 CrossRefGoogle Scholar
  12. 12.
    Eubank S., Guclu H., Anil-Kunar V.S., Marathe M.V., Srinivasan A., Toroczkai Z., Wang N. (2005). Modelling disease outbreaks in realistic social networks. Nature 429: 180–184 CrossRefGoogle Scholar
  13. 13.
    Gupta S., Anderson R.M., May R.M. (1989). Networks of sexual contacts: implications for the pattern of spread of hiv. AIDS 3: 807–817 CrossRefGoogle Scholar
  14. 14.
    Halloran M.E., Longini I., Nizam A., Yang Y. (2005). Containging bioterrorist smallpox. Science 298: 1428 CrossRefGoogle Scholar
  15. 15.
    Harris T.E. (1963). The Theory of Branching Processes. Springer, Berlin zbMATHGoogle Scholar
  16. 16.
    Kaplan E.H., Craft D.L., Wein L.M. (2002). Emergency response to a smallpox attach: the case for mass vaccination. PNAS USA 99: 10935 CrossRefGoogle Scholar
  17. 17.
    Keeling M.J. (1999). The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. B Biol. Sci. 266(1421): 859–859 CrossRefGoogle Scholar
  18. 18.
    Liljeros F., Edling C.R., Amaral L.A.N., Stanley H.E., Aberg Y. (2001). The web of human sexual contacts. Nature 411: 907–908 CrossRefGoogle Scholar
  19. 19.
    Meyers L.A., Pourbohloul B., Newman M.E.J., Skowronski D.M., Brun-ham R.C. (2005). Network theory and sars: predicting outbreak diversity. J. Theor. Biol. 232: 71–81 CrossRefMathSciNetGoogle Scholar
  20. 20.
    Meyers L.A., Pourbohloul B., Newman M.E.J., Skowronski D.M., Brunham R.C. (2005). Network theory and SARS: predicting outbreak diversity. J. Theor. Biol. 232(1): 71–81 CrossRefMathSciNetGoogle Scholar
  21. 21.
    Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: Uniform generation of random graphs with arbitrary degree sequences. Preprint cond-mat/0312028 (2003)Google Scholar
  22. 22.
    Molloy M., Reed B. (1995). A critical point for random graphs with a given degree sequence. Random Struct. Algor. 6: 161 zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Molloy M., Reed B. (1998). The size of the giant component of a random graph with a given degree sequence. Comb. Probab. Comput. 7: 295–305 zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Newman M.E.J. (2002). The spread of epidemic disease on networks. Phys. Rev. E 66: 016128 CrossRefMathSciNetGoogle Scholar
  25. 25.
    Newman M.E.J., Barabási A.L., Watts D.J. (2006). The Structure and Dynamics of Networks. Princeton University Press, Google Scholar
  26. 26.
    Newman M.E.J., Watts D.J., Strogatz S.H. (2002). Random graph models of social networks. PNAS USA 99: 2566–2572 zbMATHCrossRefGoogle Scholar
  27. 27.
    Pastor-Satorras R., Vespignani A. (2001). Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86: 3200–3203 CrossRefGoogle Scholar
  28. 28.
    Pastor-Satorras R., Vespignani A. (2001). Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63: 066117 CrossRefGoogle Scholar
  29. 29.
    Pastor-Satorras R., Vespignani A. (2002). Handbook of Graphs and Networks: From the Genome to the Internet. chapter Epidemics and immunization in scale-free networks. Wiley-VCH, Berlin Google Scholar
  30. 30.
    Saramki J., Kaski K. (2005). Modelling development of epidemics with dynamic small-world networks. J. Theor. Biol. 234: 413–421 CrossRefGoogle Scholar
  31. 31.
    Strogatz S.H. (2001). Exploring complex networks. Nature 410: 268–276 CrossRefGoogle Scholar
  32. 32.
    Veliov V.M. (2005). On the effect of population heterogeneity on dynamics of epidemic diseases. J. Math. Biol. 51: 123–143 zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Warren C.P., Sander L.M., Sokolov I., Simon C., Koopman J. (2002). Percolation on disordered networks as a model for epidemics. Math. Biosci. 180: 293–305 zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Wilf H.S. (1994). Generatingfunctionology, 2nd edn. Academic, Boston zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Integrative BiologyUniversity of TexasAustinUSA

Personalised recommendations