Journal of Mathematical Biology

, Volume 56, Issue 1–2, pp 215–252 | Cite as

FR3D: finding local and composite recurrent structural motifs in RNA 3D structures

  • Michael Sarver
  • Craig L. Zirbel
  • Jesse Stombaugh
  • Ali Mokdad
  • Neocles B. Leontis
Article

Abstract

New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, “Find RNA 3D” (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs whose geometric discrepancy with respect to the query motif falls below a user-specified cutoff discrepancy. This technique can be applied to RMSD searches. Candidate motifs identified geometrically may be further screened symbolically to identify those that contain particular basepair types or base-stacking arrangements or that conform to sequence continuity or nucleotide identity constraints. Purely symbolic searches for motifs containing user-defined sequence, continuity and interaction constraints have also been implemented. We demonstrate that FR3D finds all occurrences, both local and composite and with nucleotide substitutions, of sarcin/ricin and kink-turn motifs in the 23S and 5S ribosomal RNA 3D structures of the H. marismortui 50S ribosomal subunit and assigns the lowest discrepancy scores to bona fide examples of these motifs. The search algorithms have been optimized for speed to allow users to search the non-redundant RNA 3D structure database on a personal computer in a matter of minutes.

Mathematics Subject Classification (2000)

92C40 05C85 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams P.L., Stahley M.R., Kosek A.B., Wang J. and Strobel S.A. (2004). Crystal structure of a self-splicing group I intron with both exons. Nature 430(6995): 45–50 CrossRefGoogle Scholar
  2. 2.
    Babcock M.S., Pednaul T.E.P. and Olson W.K. (1994). Nucleic acid structure analysis. mathematics for local Cartesian and helical structure parameters that are truly comparable between structures. J. Mol. Biol. 237(1): 125–156 CrossRefGoogle Scholar
  3. 3.
    Ban N., Nissen P., Hansen J., Moore P.B. and Steitz T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289(5481): 905–920 CrossRefGoogle Scholar
  4. 4.
    Bayley M.J., Gardiner E.J., Willett P. and Artymiuk P.J. (2005). A fourier fingerprint-based method for protein surface representation. J. Chem. Inf. Model 45(3): 696–707 CrossRefGoogle Scholar
  5. 5.
    Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N. and Bourne P.E. (2000). The Protein Data Bank. Nucleic Acids Res. 28(1): 235–242 CrossRefGoogle Scholar
  6. 6.
    Bourne P.E., Addess K.J., Bluhm W.F., Chen L., Deshpande N., Feng Z., Fleri W., Green R., Merino-Ott J.C., Townsend-Merino W., Weissig H., Westbrook J. and Berman H.M. (2004). The distribution and query systems of the RCSB Protein Data Bank. Nucleic Acids Res. 32(Database issue): D223–D225 CrossRefGoogle Scholar
  7. 7.
    Deshpande N., Addess K.J., Bluhm W.F., Merino-Ott J.C., Townsend-Merino W., Zhang Q., Knezevich C., Xie L., Chen L., Feng Z., Green R.K., Flippen-Anderson J.L., Westbrook J., Berman H.M. and Bourne P.E. (2005). The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res. 33(Database issue): D233–D237 CrossRefGoogle Scholar
  8. 8.
    Dror O., Nussinov R. and Wolfson H. (2005). alignment of RNA tertiary structures. Bioinformatics 21(Suppl 2): ii47–ii53 CrossRefGoogle Scholar
  9. 9.
    Duarte C.M. and Pyle A.M. (1998). Stepping through an RNA structure: a novel approach to conformational analysis. J. Mol. Biol. 284(5): 1465–1478 CrossRefGoogle Scholar
  10. 10.
    Duarte C.M., Wadley L.M. and Pyle A.M. (2003). RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Res. 31(16): 4755–4761 CrossRefGoogle Scholar
  11. 11.
    Dutta S. and Berman H.M. (2005). Large macromolecular complexes in the Protein Data Bank: a status report. Structure 13(3): 381–388 CrossRefGoogle Scholar
  12. 12.
    Francois B., Russell R.J., Murray J.B., Aboul-ela F., Masquida B., Vicens Q. and Westhof E. (2005). Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic. Acids Res. 33(17): 5677–5690 CrossRefGoogle Scholar
  13. 13.
    Gendron P., Lemieux S. and Major F. (2001). Quantitative analysis of nucleic acid three-dimensional structures. J. Mol. Biol. 308(5): 919–936 CrossRefGoogle Scholar
  14. 14.
    Golden B.L., Kim H. and Chase E. (2005). Crystal structure of a phage Twort group I ribozyme-product complex. Nat. Struct. Mol. Biol. 12(1): 82–89 CrossRefGoogle Scholar
  15. 15.
    Golub G.H. and Van Loan C.F. (1996). Matrix computations, third edn Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore Google Scholar
  16. 16.
    Harms J., Schluenzen F., Zarivach R., Bashan A., Gat S., Agmon I., Bartels H, Franceschi F. and Yonath A. (2001). High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107(5): 679–688 CrossRefGoogle Scholar
  17. 17.
    Harrison A.M., South D.R., Willett P. and Artymiuk P.J. (2003). Representation, searching and discovery of patterns of bases in complex RNA structures. J. Comput. Aided. Mol. Des. 17(8): 537–549 CrossRefGoogle Scholar
  18. 18.
    Hershkovitz E., Tannenbaum E., Howerton S.B., Sheth A., Tannenbaum A. and Williams L.D. (2003). Automated identification of RNA conformational motifs: theory and application to the HM LSU 23S rRNA. Nucleic. Acids. Res. 31(21): 6249–6257 CrossRefGoogle Scholar
  19. 19.
    Hobza P. and Sponer J. (1999). Structure, energetics and dynamics of the nucleic acid base pairs: nonempirical ab initio calculations. Chem. Rev. 99(11): 3247–3276 CrossRefGoogle Scholar
  20. 20.
    Hoffmann B., Mitchell G.T., Gendron P., Major F., Andersen A.A., Collins R.A. and Legault P. (2003). NMR Structure of the active conformation of the Varkud satellite ribozyme cleavage site. Proc. Natl. Acad. Sci. USA 100(12): 7003–8 CrossRefGoogle Scholar
  21. 21.
    Holbrook S.R. (2005). Structure: the long and the short of it. Curr. Opin. Struct. Biol. 15(3): 302–308 CrossRefGoogle Scholar
  22. 22.
    Horn B.K.P., Hilden H.M. and Nagahdaripour S. (1998). Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. A 5(7): 1127–1135 CrossRefGoogle Scholar
  23. 23.
    Huang H.C., Nagaswamy U. and Fox G.E. (2005). The application of cluster analysis in the intercomparison of loop structures in RNA. RNA 11(4): 412–423 CrossRefGoogle Scholar
  24. 24.
    Jossinet F. and Westhof E. (2005). Sequence to structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21(15): 3320–3321 CrossRefGoogle Scholar
  25. 25.
    Kazantsev A.V., Krivenko A.A., Harrington D.J., Holbrook S.R., Adams P.D. and Pace N.R. (2005). Crystal structure of a bacterial ribonuclease P RNA. Proc. Natl. Acad. Sci. USA 102(38): 13392–13397 CrossRefGoogle Scholar
  26. 26.
    Klein D.J., Schmeing T.M., Moore P.B. and Steitz T.A. (2001). The kink-turn: a new RNA secondary structure motif. Embo. J. 20(15): 4214–4221 CrossRefGoogle Scholar
  27. 27.
    Klosterman P.S., Hendrix D.K., Tamura M., Holbrook S.R. and Brenner S.E. (2004). Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Nucleic. Acids. Res. 32(8): 2342–2352 CrossRefGoogle Scholar
  28. 28.
    Leontis, N., Altman, R., Berman, H., Brenner, S.E., Brown, J., Engelke, D., Harvey, S.C., Holbrook, S.R., Jossinet, F., Lewis, S.E., Major, F., Mathews, D.H., Richardson, J.S., Williamson, J.R.E.W.: The RNA ontology consortium: An open invitation to the rna community. RNA 12 (2006)Google Scholar
  29. 29.
    Leontis N., Lescoute A. and Westhof E. (2006). The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol. 16(3): 274–287 CrossRefGoogle Scholar
  30. 30.
    Leontis N.B., Stombaugh J. and Westhof E. (2002). The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic. Acids. Res. 30(16): 3497–3531 CrossRefGoogle Scholar
  31. 31.
    Leontis N.B., Stombaugh J. and Westhof E. (2002). Motif prediction in ribosomal RNAs lessons and prospects for automated motif prediction in homologous RNA molecules. Biochimie 84(9): 961–973 CrossRefGoogle Scholar
  32. 32.
    Leontis N.B. and Westhof E. (2001). Geometric nomenclature and classification of RNA base pairs. RNA 7(4): 499–512 CrossRefGoogle Scholar
  33. 33.
    Leontis N.B. and Westhof E. (2003). Analysis of RNA motifs. Curr. Opin. Struct. Biol. 13(3): 300–308 CrossRefGoogle Scholar
  34. 34.
    Lescoute A., Leontis N.B., Massire C. and Westhof E. (2005). Recurrent structural RNA motifs, isostericity matrices and sequence alignments. Nucleic. Acids. Res. 33(8): 2395–2409 CrossRefGoogle Scholar
  35. 35.
    Major, F., Thibault, P.: In: T.~Lengauer (ed.) Bioinformatics: From Genomes to Therapies, pp. 491–539. Wiley, New York (2006)Google Scholar
  36. 36.
    Major F., Turcotte M., Gautheret D., Lapalme G., Fillion E. and Cedergren R. (1991). The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science 253(5025): 1255–60 CrossRefGoogle Scholar
  37. 37.
    Murray L.J., Arendall W.B., Richardson 3rd D.C. and Richardson J.S. (2003). RNA backbone is rotameric. Proc. Natl. Acad. Sci. USA 100(24): 13904–13909 CrossRefGoogle Scholar
  38. 38.
    Murray L.J., Richardson J.S., Arendall W.B. and Richardson D.C. (2005). RNA backbone rotamers-finding your way in seven dimensions. Biochem. Soc. Trans. 33(Pt 3): 485–487 Google Scholar
  39. 39.
    Olivier C., Poirier G., Gendron P., Boisgontier A., Major F. and Chartrand P. (2005). Identification of a conserved RNA motif essential for She2p recognition and mRNA localization to the yeast bud. Mol. Cell. Biol. 25(11): 4752–4766 CrossRefGoogle Scholar
  40. 40.
    Olson W.K., Bansal M., Burley S.K., Dickerson R.E., Gerstein M., Harvey S.C., Heinemann U., Lu X.J., Neidle S., Shakked Z., Sklenar H., Suzuki M., Tung C.S., Westhof E., Wolberger C. and Berman H.M. (2001). A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 313(1): 229–237 CrossRefGoogle Scholar
  41. 41.
    Schneider B., Moravek Z. and Berman H.M. (2004). conformational classes. Nucleic. Acids. Res. 32(5): 1666–1677 CrossRefGoogle Scholar
  42. 42.
    Schuwirth B.S., Borovinskaya M.A., Hau C.W., Zhang W., Vila-Sanjurjo A., Holton J.M. and Cate J.H. (2005). Structures of the bacterial ribosome at 3.5A resolution. Science 310(5749): 827–834 CrossRefGoogle Scholar
  43. 43.
    Wadley L.M. and Pyle A.M. (2004). The identification of novel RNA structural motifs usingCOMPADRES: an automated approach to structural discovery. Nucleic. Acids. Res. 32(22): 6650–6659 CrossRefGoogle Scholar
  44. 44.
    Wimberly B.T., Brodersen D.E., Morgan-Warren R.J., Carter A.P., Vonrhein C., Hartsch T., Ramakrishnan V. and Clemons W.M. (2000). Structure of the 30S ribosomal subunit.. Nature 407(6802): 327–339 CrossRefGoogle Scholar
  45. 45.
    Yang H., Jossinet F., Leontis N., Chen L., Westbrook J., Berman H. and Westhof E. (2003). Tools for the automatic identification and classification of RNA base pairs. Nucleic. Acids. Res. 31(13): 3450–3460 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Michael Sarver
    • 1
  • Craig L. Zirbel
    • 1
  • Jesse Stombaugh
    • 2
  • Ali Mokdad
    • 2
  • Neocles B. Leontis
    • 2
  1. 1.Department of Mathematics and StatisticsBowling Green State UniversityBowling GreenUSA
  2. 2.Department of ChemistryBowling Green State UniversityBowling GreenUSA

Personalised recommendations