Journal of Mathematical Biology

, Volume 56, Issue 1–2, pp 253–278 | Cite as

RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone

  • Xueyi Wang
  • Gary Kapral
  • Laura Murray
  • David Richardson
  • Jane Richardson
  • Jack Snoeyink
Article

Abstract

Although accurate details in RNA structure are of great importance for understanding RNA function, the backbone conformation is difficult to determine, and most existing RNA structures show serious steric clashes (≥ 0.4 Å overlap) when hydrogen atoms are taken into account. We have developed a program called RNABC (RNA Backbone Correction) that performs local perturbations to search for alternative conformations that avoid those steric clashes or other local geometry problems. Its input is an all-atom coordinate file for an RNA crystal structure (usually from the MolProbity web service), with problem areas specified. RNABC rebuilds a suite (the unit from sugar to sugar) by anchoring the phosphorus and base positions, which are clearest in crystallographic electron density, and reconstructing the other atoms using forward kinematics. Geometric parameters are constrained within user-specified tolerance of canonical or original values, and torsion angles are constrained to ranges defined through empirical database analyses. Several optimizations reduce the time required to search the many possible conformations. The output results are clustered and presented to the user, who can choose whether to accept one of the alternative conformations.

Two test evaluations show the effectiveness of RNABC, first on the S-motifs from 42 RNA structures, and second on the worst problem suites (clusters of bad clashes, or serious sugar pucker outliers) in 25 unrelated RNA structures. Among the 101 S-motifs, 88 had diagnosed problems, and RNABC produced clash-free conformations with acceptable geometry for 71 of those (about 80%). For the 154 worst problem suites, RNABC proposed alternative conformations for 72. All but 8 of those were judged acceptable after examining electron density (where available) and local conformation. Thus, even for these worst cases, nearly half the time RNABC suggested corrections suitable to initiate further crystallographic refinement. The program is available from http://kinemage.biochem.duke.edu.

Keywords

Kinematic chain RNA backbone conformation RNA backbone adjustment RNA crystallography Automated rebuilding Steric clash S-motifs All-atom contacts Structure validation 

Mathematics Subject Classification (2000)

92E10 92-04 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams P.D., Grosse-Kunstleve R.W., Hung L.W., Ioerger T.R., McCoy A.J., Moriarty N.W., Read R.J., Sacchettini J.C., Sauter N.K., Terwilliger T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Cryst. D. 58: 1948–1954 CrossRefGoogle Scholar
  2. 2.
    Adams P.L., Stahley M.R., Kosek A.B., Wang J., Strobel S.A. (2004). Crystal structure of a self-splicing group I intron with both exons. Nature 430(6995): 45–50 CrossRefGoogle Scholar
  3. 3.
    Arendall W.B. III., Tempel W., Richardson J.S., Zhou W., Wang S., Davis I.W., Lin Z.J., Rose J.P., Carlson W.M., Lou M., Richardson D.C., Wang B.C. (2005). A test of enhancing model accuracy in high throughput crystallography. J. Struct. Funct. Genomics 6(1): 1–11 CrossRefGoogle Scholar
  4. 4.
    Ban N., Nissen P., Hansen J., Moore P.B., Steitz T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289(5481): 905–920 CrossRefGoogle Scholar
  5. 5.
    Batey R.T., Gilbert S.D., Montange R.K. (2004). Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432(7015): 411–415 CrossRefGoogle Scholar
  6. 6.
    Berman H.M., Olson W.K., Beveridge D.L., Westbrook J., Gelbin A., Demeny T., Hsieh S.H., Srinivasan A.R., Schneider B. (1992). The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63(3): 751–759 CrossRefGoogle Scholar
  7. 7.
    Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. (2000). The protein data bank. Nucleic Acids Res. 28(1): 235–242 CrossRefGoogle Scholar
  8. 8.
    Brunger A.T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355: 472–475 CrossRefGoogle Scholar
  9. 9.
    Brunger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.S., Kuszewski J., Nilges M., Pannu N.S., Read R.J., Rice L.M., Simonson T., Warren G.L. (1998). Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D. 54: 905–921 CrossRefGoogle Scholar
  10. 10.
    Canutescu A.A., Dunbrack R.L. Jr. (2003). Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12(5): 963–972 CrossRefGoogle Scholar
  11. 11.
    Chen J.L., Greider C.W. (2004). Telomerase RNA structure and function: implications for dyskeratosis congenita. Trends Biochem. Sci. 29(4): 183–192 CrossRefGoogle Scholar
  12. 12.
    Claverie J.M. (2005). Fewer genes, more non-coding RNA. Science 309(5740): 1529–1530 CrossRefGoogle Scholar
  13. 13.
    Correll C.C., Beneken J., Plantinga M.J., Lubbers M., Chan Y.L. (2003). The common and distinctive features of the bulged-G motif based on a 1.04 Å resolution RNA structure. Nucleic Acids Res. 31(23): 6806–6818 CrossRefGoogle Scholar
  14. 14.
    Crick F. (1970). Central dogma of molecular biology. Nature 227(5258): 561–563 CrossRefGoogle Scholar
  15. 15.
    Davis I.W., Murray L.W., Richardson J.S., Richardson D.C. (2004). MolProbity: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32: W615–W619 CrossRefGoogle Scholar
  16. 16.
    Doudna J.A., Cech T.R. (2002). The chemical repertoire of natural ribozymes. Nature 418(6894): 222–228 CrossRefGoogle Scholar
  17. 17.
    Duarte C.M., Wadley L.M., Pyle A.M. (2003). RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Res. 31(16): 4755–4761 CrossRefGoogle Scholar
  18. 18.
    Emsley P., Cowtan K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D. 60: 2126–2132 CrossRefGoogle Scholar
  19. 19.
    Ferre-D’Amare A.R., Zhou K., Doudna J.A. (1988). Crystal structure of a hepatitis delta virus ribozyme. Nature 395: 567–574 Google Scholar
  20. 20.
    Frank J. (2003). Electron microscopy of functional ribosome complexes. Bipolymers 68(2): 223–233 CrossRefGoogle Scholar
  21. 21.
    Golden B.L., Kim H., Chase E. (2005). Crystal structure of a phage Twort group I ribozyme-product complex. Nat. Struct. Mol. Biol. 12(1): 82–89 CrossRefGoogle Scholar
  22. 22.
    Hansen J.L., Moore P.B., Steitz T.A. (2003). Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J. Mol. Biol. 330(5): 1061–1075 CrossRefGoogle Scholar
  23. 23.
    Huang D.B., Vu D., Cassiday L.A., Zimmerman J.M., Maher L.J. III., Ghosh G. (2003). Crystal structure of NF-kappaB (p50)2 complexed to a high-affinity RNA aptamer. Proc. Natl. Acad. Sci. USA 100(16): 9268–9273 CrossRefGoogle Scholar
  24. 24.
    Jones T.A., Zou J.Y., Cowan S.W., Kjeldgaard M. (1991). Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A. 47: 110–119 CrossRefGoogle Scholar
  25. 25.
    Jovine L., Djordjevic S., Rhodes D. (2000). The crystal structure of yeast phenylalanine tRNA at 2.0 Å resolution: cleavage by Mg(2+) in 15-year-old crystals. J. Mol. Biol. 301(2): 401–414 CrossRefGoogle Scholar
  26. 26.
    Klein D.J., Ferre-D’Amare A.R. (2006). Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313(5794): 1752–1756 CrossRefGoogle Scholar
  27. 27.
    Klein D.J., Moore P.B., Steitz T.A. (2004). The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J. Mol. Biol. 340(1): 141–177 CrossRefGoogle Scholar
  28. 28.
    Klein D.J., Schmeing T.M., Moore P.B., Steitz T.A. (2001). The kink-turn: a new RNA secondary structure motif. EMBO. J. 20(15): 4214–4221 CrossRefGoogle Scholar
  29. 29.
    Kleywegt G.J., Harris M.R., Zou J.Y., Taylor T.C., Wahlby A., Jones T.A. (2004). The Uppsala electron-density server. Acta Cryst. D. 60: 2240–2249 CrossRefGoogle Scholar
  30. 30.
    Klosterman P.S., Tamura M., Holbrook S.R., Brenner S.E. (2002). SCOR: a structural classification of RNA database. Nucleic Acids Res. 30: 392–394 CrossRefGoogle Scholar
  31. 31.
    Kolk M.H., van der Graaf M., Wijmenga S.S., Pleij C.W., Heus H.A., Hilbers C.W. (1998). NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science 280(5362): 434–438 CrossRefGoogle Scholar
  32. 32.
    Krissinel, E.: CCP4 coordinate library project. http://www.ebi.ac.uk/∼keb/cldoc/ (2004)Google Scholar
  33. 33.
    Leontis N.B., Altman R.B., Berman H.M., Brenner S.E., Brown J.W., Engelke D.R., Harvey S.C., Holbrook S.R., Jossinet F., Lewis S.E., Major F., Mathews D.H., Richardson J.S., Williamson J.R., Westhof E. (2006). The RNA ontology consortium: an open invitation to the RNA community. RNA 12(4): 533–541 CrossRefGoogle Scholar
  34. 34.
    Lilley D.M. (2005). Structure, folding and mechanisms of ribozymes. Curr. Opin. Struct. Biol. 15(3): 313–323 CrossRefGoogle Scholar
  35. 35.
    Lolle S.J., Victor J.L., Young J.M., Pruitt R.E. (2005). Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis. Nature 434(7032): 505–509 CrossRefGoogle Scholar
  36. 36.
    Lovell S.C., Davis I.W., Arendall W.B. III., de Bakker P.I.W., Word J.M., Prisant M.G., Richardson J.S., Richardson D.C. (2003) Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins Struct. Funct. Genet. 50: 437–450 CrossRefGoogle Scholar
  37. 37.
    Lukavsky P.J., Kim I., Otto G.A., Puglisi J.D. (2003). Structure of HCV IRES domain II determined by NMR. Nat. Struct. Biol. 10(12): 1033–1038 CrossRefGoogle Scholar
  38. 38.
    Martick M., Scott W.G. (2006). Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126(2): 309–320 CrossRefGoogle Scholar
  39. 39.
    Mattick J.S. (2001). Non-coding RNAs: the architects of eukaryotic complexity. EMBO. Rep. 2: 986–991 CrossRefGoogle Scholar
  40. 40.
    McCarthy J.M. (1990). Introduction to theoretical kinematics. MIT Press, Cambridge Google Scholar
  41. 41.
    McRee D.E. (1999). XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125: 156–165 CrossRefGoogle Scholar
  42. 42.
    Morris A.L., MacArthur M.W., Hutchinson E.G., Thornton J.M. (1992). Stereochemical quality of protein structure coordinates. Proteins 12: 345–364 CrossRefGoogle Scholar
  43. 43.
    Murray H.L., Jarrell K.A. (1999). Flipping the switch to an active spliceosome. Cell 96: 599–602 CrossRefGoogle Scholar
  44. 44.
    Murray L.J., Arendall W.B. III., Richardson D.C., Richardson J.S. (2003) RNA backbone is rotameric. PNAS 100: 13904–13909 CrossRefGoogle Scholar
  45. 45.
    Murthy V.L., Srinivasan R., Draper D.E., Rose G.D. (1999). A complete conformational map for RNA. J. Mol. Biol. 291(2): 313–327 CrossRefGoogle Scholar
  46. 46.
    Nielson H., Westhof E., Johansen S. (2005). An mRNA is capped by a 2′, 5′ lariat catalyzed by a group I-like ribozyme. Science 309(5740): 1584–1587 CrossRefGoogle Scholar
  47. 47.
    Nilsen T.W. (1994). RNA–RNA interactions in the spliceosome: unraveling the ties that bind. Cell 78: 1–4 CrossRefGoogle Scholar
  48. 48.
    Nissen P., Hansen J., Ban N., Moore P.B., Steitz T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289(5481): 920–930 CrossRefGoogle Scholar
  49. 49.
    Oberstrass F.C., Lee A., Stefl R., Janis M., Chanfreau G., Allain F.H. (2006). Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat. Struct. Mol. Biol. 13(2): 160–167 CrossRefGoogle Scholar
  50. 50.
    Parkinson G., Vojtechovsky J., Clowney L., Brünger A.T., Berman H.M. (1996). New parameters for the refinement of nucleic acid containing structures. Acta Crystallogr. D. Biol. Crystallogr. 52: 57–64 CrossRefGoogle Scholar
  51. 51.
    Perrakis A., Morris R., Lamzin V.S. (1999). Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6(5): 458–463 CrossRefGoogle Scholar
  52. 52.
    Richardson, J.S., Richardson, D.C.: MAGE, PROBE, and Kinemages, Chapter 25.2.8. In: Rossmann, M.G., Arnold, E. (eds.) International Tables for Crystallography, vol. F, pp. 727–730. Kluwer Publishers, Dordrecht (2001)Google Scholar
  53. 53.
    Salehi-Ashtiani K., Luptak A., Litovchick A., Szostak J.W. (2006). A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313(5794): 1788–1792 CrossRefGoogle Scholar
  54. 54.
    Sasisekharan V., Lakshminarayanan A.V. (1969). Stereochemistry of nucleic acids and polynucleotides. VI. Minimum energy conformations of dimethyl phosphate. Biopolymers 8: 505–514 CrossRefGoogle Scholar
  55. 55.
    Schluenzen F., Tocilj A., Zarivach R., Harms J., Gluehmann M., Janell D., Bashan A., Bartels H., Agmon I., Franceschi F., Yonath A. (2000). Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102(5): 615–623 CrossRefGoogle Scholar
  56. 56.
    Schneider B., Moravek Z., Berman H.M. (2004). RNA conformational classes. Nucleic Acids Res. 32(5): 1666–1677 CrossRefGoogle Scholar
  57. 57.
    Serganov A., Polonskaia A., Phan A.T., Breaker R.R., Patel D.J. (2006). Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441(7097): 1167–1171 CrossRefGoogle Scholar
  58. 58.
    Soukup J.K., Soukup G.A. (2004). Riboswitches exert genetic control through metabolite-induced conformational change. Curr. Opin. Struct. Biol. 14: 344–349 CrossRefGoogle Scholar
  59. 59.
    Stahley M.R., Strobel S.A. (2005). Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309(5740): 1587–1590 CrossRefGoogle Scholar
  60. 60.
    Sussman J.L., Kim S. (1976). Three-dimensional structure of a transfer RNA in two crystal forms. Science 192(4242): 853–858 CrossRefGoogle Scholar
  61. 61.
    Terwilliger T.C. (2002). Automated structure solution, density modification and model building. Acta Cryst. D. 58: 1937–1940 CrossRefGoogle Scholar
  62. 62.
    Tomari Y., Zamore P.D. (2005). Perspective: machines for RNAi. Genes Dev. 19(5): 517–529 CrossRefGoogle Scholar
  63. 63.
    Torres-Larios A., Swinger K.K., Krasilnikov A.S., Pan T., Mondragon A. (2005). Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437(7058): 584–587 CrossRefGoogle Scholar
  64. 64.
    Wimberly B.T., Brodersen D.E., Clemons W.M. Jr., Morgan-Warren R.J., Carter A.P., Vonrhein C., Hartsch T., Ramakrishnan V. (2000) Structure of the 30S ribosomal subunit. Nature 407(6802): 327–339 CrossRefGoogle Scholar
  65. 65.
    Winkler W., Nahvi A., Breaker R.R. (2002). Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419(6910): 952–956 CrossRefGoogle Scholar
  66. 66.
    Word, J.M.: All-atom small-probe contact surface analysis: an information-rich description of molecular goodness-of-fit. Ph.D. thesis, Duke University, Durham (2000)Google Scholar
  67. 67.
    Word J.M., Lovell S.C., LaBean T.H., Taylor H.C., Zalis M.E., Presley B.K., Richardson J.S., Richardson D.C. (1999). Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J. Mol. Biol. 285(4): 1711–1733 CrossRefGoogle Scholar
  68. 68.
    Word J.M., Lovell S.C., Richardson J.S., Richardson D.C. (1999). Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 285(4): 1735–1947 CrossRefGoogle Scholar
  69. 69.
    Yusupov M.M., Yusupova G.Z., Baucom A., Lieberman K., Earnest T.N., Cate J.H., Noller H.F. (2001). Crystal structure of the ribosome at 5.5 Å resolution. Science 292(5518): 883–896 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Xueyi Wang
    • 1
  • Gary Kapral
    • 2
  • Laura Murray
    • 2
  • David Richardson
    • 2
  • Jane Richardson
    • 2
  • Jack Snoeyink
    • 1
  1. 1.Department of Computer ScienceUNC Chapel HillChapel HillUSA
  2. 2.Department of BiochemistryDuke UniversityDurhamUSA

Personalised recommendations