Advertisement

Journal of Mathematical Biology

, Volume 54, Issue 6, pp 847–885 | Cite as

Taxis equations for amoeboid cells

  • Radek Erban
  • Hans G. Othmer
Article

Abstract

The classical macroscopic chemotaxis equations have previously been derived from an individual-based description of the tactic response of cells that use a “run-and-tumble” strategy in response to environmental cues [17,18]. Here we derive macroscopic equations for the more complex type of behavioral response characteristic of crawling cells, which detect a signal, extract directional information from a scalar concentration field, and change their motile behavior accordingly. We present several models of increasing complexity for which the derivation of population-level equations is possible, and we show how experimentally measured statistics can be obtained from the transport equation formalism. We also show that amoeboid cells that do not adapt to constant signals can still aggregate in steady gradients, but not in response to periodic waves. This is in contrast to the case of cells that use a “run-and-tumble” strategy, where adaptation is essential.

Keywords

Amoeboid cells Microscopic models Direction sensing Aggregation Chemotaxis equation Velocity jump process 

Mathematics Subject Classification (2000)

35Q80 60J15 65U05 92B05 35B05 92C17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alt W. (1980). Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9: 147–177 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barkai N., Leibler S. (1997). Robustness in simple biochemical networks. Nature 387: 913–917 CrossRefGoogle Scholar
  3. 3.
    Berg H.C. (1975). How bacteria swim. Sci. Am. 233: 36–44 CrossRefGoogle Scholar
  4. 4.
    Berg H.C., Brown D.A. (1972). Chemotaxis in Escherichia Coli analysed by three-dimensional tracking. Nature 239(5374): 500–504 CrossRefGoogle Scholar
  5. 5.
    Bourret, R.B., Stock, A.M.: Molecular information processing: lessons from bacterial chemotaxis. J. Biol. Chem. 277(12), 9625–9628, Review (2002)Google Scholar
  6. 6.
    Chalub F., Markowich P., Perthame B., Schmeiser C. (2004). Kinetic models for chemotaxis and their drift-diffusion limits. Monatshefte für Mathematik 142(1–2): 123–141 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chung, C.Y., Funamoto, S., Firtel, R.A.: Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem. Sci. 26(9), 557–566, Review (2001)Google Scholar
  8. 8.
    Condeelis, J., et al.: Mechanisms of ameboid chemotaxis: an evaluation of the cortical expansion model. Dev. Genet. 11, 333–340 (1990)Google Scholar
  9. 9.
    Dallon J. C., Othmer H.G. (1997). A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1351): 391–417 CrossRefGoogle Scholar
  10. 10.
    Dallon J.C., Othmer H.G. (1998). A continuum analysis of the chemotactic signal seen by Dictyostelium discoideum. J. Theor. Biol. 194(4): 461–483 CrossRefGoogle Scholar
  11. 11.
    Dickinson R.B., Tranquillo R.T. (1995). Transport equations and indices for random and biased cell migration based on single cell properties. SIAM J. Appl. Math. 55(5): 1419–54 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dolak, Y., Schmeiser, Y.: Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 51(6) 595–615 (2005)Google Scholar
  13. 13.
    Erban, R.: From individual to collective behaviour in biological systems. Ph.D. thesis, University of Minnesota, 2005Google Scholar
  14. 14.
    Erban R., Hwang H. (2006). Global existence results for the complex hyperbolic models of bacterial chemotaxis. Discret. Contin. Dyn. Syst. Ser. B 6: 1239–1260 zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Erban R., Kevrekidis I.G., Adalsteinsson D., Elston T.C. (2006). Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. J. Chem. Phys. 124(8): 084106 CrossRefGoogle Scholar
  16. 16.
    Erban, R., Kevrekidis, I.G., Othmer, H.G.: An equation-free computational approach for extracting population-level behavior from individual-based models of biological dispersal. Physica D 215, 1–24 (2006)Google Scholar
  17. 17.
    Erban R., Othmer H. (2004). From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65(2): 361–391 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Erban R., Othmer H.G. (2005). From signal transduction to spatial pattern formation in E. coli: a paradigm for multi-scale modeling in biology. Multiscale Model. Simul. 3(2): 362–394 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fisher P.R., Merkl R., Gerisch G. (1989). Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J. Cell Biol. 108: 973–984 CrossRefGoogle Scholar
  20. 20.
    Ford, R., Lauffenburger, D.A.: A simple expression for quantifying bacterial chemotaxis using capillary assay data: application to the analysis of enhanced chemotactic responses from growth-limited cultures, Math. Biosci. 109(2), 127–150 (1992)Google Scholar
  21. 21.
    Geiger J., Wessels D., Soll D.R. (2003). Human polymorphonuclear leukocytes respond to waves of chemoattractant, like Dictyostelium. Cell Motil. Cytoskeleton 56(1): 27–44 CrossRefGoogle Scholar
  22. 22.
    Gerisch G. (1982). Chemotaxis in Dictyostelium. Annu. Rev. Physiol. 44: 535–552 CrossRefGoogle Scholar
  23. 23.
    Gerisch, G., Fromm, H., Huesgen, A., Wick, U.: Control of cell-contact sites by cyclic AMP pulses in differentiating Dictyostelium cells. Nature 255, 547–549 (1975)Google Scholar
  24. 24.
    Hillen T., Othmer H.G. (2000). The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61(3): 751–775 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Höfer T., Maini P. (1997). Streaming instability of slime mold amoebae: an analytical model. phys. rev. e (statistical physics, plasmas, fluids and related interdisciplinary topics) 56(2): 1–7 Google Scholar
  26. 26.
    Iijima, M., Huang, Y.E., Devreotes, P.: Temporal and spatial regulation of chemotaxis. Dev. Cell 3(4), 469–478, Review (2002)Google Scholar
  27. 27.
    Jin T., Zhang N., Long Y., Parent C.A., Devreotes P.N. (2000). Localization of the G protein βγ complex in living cells during chemotaxis. Science 287(5455): 1034–1036 CrossRefGoogle Scholar
  28. 28.
    Keller E.F., Segel L.A. (1970). Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26: 399–415 CrossRefGoogle Scholar
  29. 29.
    Kevrekidis I., Gear C., Hyman J., Kevrekidis P., Runborg O., Theodoropoulos K. (2003). Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1(4): 715–762 zbMATHMathSciNetGoogle Scholar
  30. 30.
    Kollmann M., Lovdok L., Bartholome K., Timmer J., Sourjik V. (2005). Design principles of a bacterial signalling network. Nature 438(7067): 504–507 CrossRefGoogle Scholar
  31. 31.
    Koshland D.E. (1980). Bacterial chemotaxis as a model behavioral system. Raven, New York Google Scholar
  32. 32.
    Krishnan J., Iglesias P. (2005). A modelling framework describing the enzyme regulation of membrane lipids underlying gradient perception in Dictyostelium cells II: input–output analysis. J. Theor. Biol. 235: 504–520 CrossRefMathSciNetGoogle Scholar
  33. 33.
    Lilly, B., Dallon, J.C., Othmer, H.G.: Pattern formation in a cellular slime mold. In: Doedel, E., Tuckerman, L.S. (eds.) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems. IMA Proceedings, vol. 119 pp. 359–383. Springer, New York (2000)Google Scholar
  34. 34.
    Martiel J.L., Goldbeter A. (1987). A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys. J. 52: 807–828 CrossRefGoogle Scholar
  35. 35.
    Mato J.M., Losada A., Nanjundiah V., Konijn T.M. (1975). Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. Proc. Natl. Acad. Sci. 72: 4991–4993 CrossRefGoogle Scholar
  36. 36.
    Meinhardt H. (1999). Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112(Pt17): 2867–2874 Google Scholar
  37. 37.
    Mitchison T.J., Cramer L.P. (1996). Actin-based cell motility and cell locomotion. Cell 84(3): 371–379 CrossRefGoogle Scholar
  38. 38.
    Othmer H.G., Dunbar S.R., Alt W. (1988). Models of dispersal in biological systems. J. Math. Biol. 26(3): 263–298 zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Othmer H.G., Hillen T. (2002). The diffusion limit of transport equations. Part II: chemotaxis equations. SIAM J Am 62: 1222–1260 zbMATHMathSciNetGoogle Scholar
  40. 40.
    Othmer H.G., Schaap P. (1998). Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Comments on Theor. Biol. 5: 175–282 Google Scholar
  41. 41.
    Parent, C.A., Devreotes, P.N.: A cell’s sense of direction. Science 284(5415), 765–770, Review (1999)Google Scholar
  42. 42.
    Pate E., Othmer H.G. (1986). Differentiation, cell sorting and proportion regulation in the slug stage of Dictyostelium discoideum. J. Theor. Biol. 118: 301–319 CrossRefMathSciNetGoogle Scholar
  43. 43.
    Patlak C.S. (1953). Random walk with persistence and external bias. Bull. Math. Biophys. 15:   311–338 MathSciNetGoogle Scholar
  44. 44.
    Sheetz, M.P., Felsenfeld, D., Galbraith, C.G., et al.: Cell migration as a five-step cycle. Biochem. Soc. Symposia 65, 233–243 (1999)Google Scholar
  45. 45.
    Soll, D.R.: The use of computers in understanding how animal cells crawl. In: Jeon, K.W., Jarvik, J. (eds.) International Review of Cytology vol. 163, pp. 43–104. Academic, New York (1995)Google Scholar
  46. 46.
    Sperb R.P. (1979). On a mathematical model describing the aggregation of amoebae. Bull. Math. Biol. 41: 555–572 zbMATHMathSciNetGoogle Scholar
  47. 47.
    Spiro P.A., Parkinson J.S., Othmer H.G. (1997). A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 94(14): 7263–7268 CrossRefGoogle Scholar
  48. 48.
    Swanson J., Taylor D.L. (1982). Local and spatially coordinated movements in Dictyostelium discoideum amoebae during chemotaxis. Cell 28: 225–232 CrossRefGoogle Scholar
  49. 49.
    Tang Y., Othmer H.G. (1995). Excitation, oscillations and wave propagation in a G-protein-based model of signal transduction in Dictyostelium discoideum. Philos. Trans. R. Soc. Lond. B Biol. Sci. 349(1328): 179–95 CrossRefGoogle Scholar
  50. 50.
    Tang Y., Othmer H.G. (1994). A G-protein-based model of adaptation in Dictyostelium discoideum. Math. Biosci. 120(1): 25–76 zbMATHCrossRefGoogle Scholar
  51. 51.
    Tranquillo R.T., Lauffenburger D.A. (1987). Stochastic model for leukocyte chemosensory movement. J. Math. Biol. 25(3): 229–262 zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Traynor D., Milne J.L., Insall R.H., Kay R.R. (2000). Ca(2+) signalling is not required for chemotaxis in Dictyostelium. EMBO J 19(17): 4846–4854 CrossRefGoogle Scholar
  53. 53.
    Varnum-Finney B., Voss E., Soll D. (1987). Frequency and orientation of pseudopod formation of Dictyostelium discoideum amoebae chemotaxing in a spatial gradient: further evidence for a temporal mechanism. Cell Motil. Cytoskeleton 8(1): 18–26 CrossRefGoogle Scholar
  54. 54.
    Wessels D., Murray J., Soll D.R. (1992). Behavior of Dictyostelium amoebae is regulated primarily by the temporal dynamic of the natural cAMP wave. Cell Motil. Cytoskeleton 23(2): 145–156 CrossRefGoogle Scholar
  55. 55.
    Wessels, D.J., Zhang, H., Reynolds, J., Daniels, K., Heid, P., Lu, S., Kuspa, A., Shaulsky, G., Loomis, W.F., Soll, D.R.: The internal phosphodiesterase regA is essential for the suppression of lateral pseudopods during Dictyostelium chemotaxis. Mol. Biol. Cell 11(8), 2803–2820 (2000)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations