Journal of Mathematical Biology

, Volume 54, Issue 5, pp 597–622 | Cite as

A mechanism for morphogen-controlled domain growth

  • R. E. BakerEmail author
  • P. K. Maini


Many developmental systems are organised via the action of graded distributions of morphogens. In the Drosophila wing disc, for example, recent experimental evidence has shown that graded expression of the morphogen Dpp controls cell proliferation and hence disc growth. Our goal is to explore a simple model for regulation of wing growth via the Dpp gradient: we use a system of reaction-diffusion equations to model the dynamics of Dpp and its receptor Tkv, with advection arising as a result of the flow generated by cell proliferation. We analyse the model both numerically and analytically, showing that uniform domain growth across the disc produces an exponentially growing wing disc.


Drosophila Domain growth Morphogen gradient Mathematical model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acheson D.J. (2005). Elementary Fluid Dynamics. Oxford Applied Mathematics and Computing Science Series.. Clarendon Press, Oxford Google Scholar
  2. 2.
    Bollenbach, T., Kruse, K., Pantazis, P., González-Gaitán, M., Jülicher, F.: Robust formation of morphogen gradients. Phys. Rev. Lett. 94(1), 018,103–1–018,103–4 (2005)Google Scholar
  3. 3.
    Briscoe J., Chen Y., Jessel T.M. and Struhl G. (2001). A Hedgehog-insensitive form of Patched provides evidence for direct long-range morphogen activity of Sonic Hedgehog in the neural tube. Mol. Cell 7: 1279–1291 CrossRefGoogle Scholar
  4. 4.
    Crampin E.J., Gaffney E.A. and Maini P.K. (1999). Reaction and diffusion of growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61: 1093–1120 CrossRefGoogle Scholar
  5. 5.
    Crampin E.J., Hackborn W.W. and Maini P.K. (2002). Pattern formation in reation-diffusion models with nonuniform domain growth. Bull. Math. Biol. 64: 747–769 CrossRefGoogle Scholar
  6. 6.
    deCelis J.F. (1997). Expression and functions of decapentaplegic and thick veins during the differentiation of the veins in the Drosophila wing. Development 124: 1007–1018 Google Scholar
  7. 7.
    Eldar A., Rosin D., Shilo B.Z. and Barkai N. (2003). Self-enhanced ligand degradation underlies robustness of morphogen gradients Dev. Cell 5: 635–646 Google Scholar
  8. 8.
    Ferguson E.L. and Anderson K.V. (1992). Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71(3): 451–461 CrossRefGoogle Scholar
  9. 9.
    Funakoshi Y., Minami M. and Tabata T. (2001). mtv shapes the activity gradient of the dpp morphogen through regulation of thickveins. Development 128: 67–74 Google Scholar
  10. 10.
    Houchmandzadeh B., Wieschaus E. and Leibler S. (2002). Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415: 798–802 Google Scholar
  11. 11.
    Kruse K., Pantazis P., Bollenbach T., Jülicher F. and González-Gaitán M. (2004). Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131(19): 4843–4856 CrossRefGoogle Scholar
  12. 12.
    Lander A.D., Nie Q. and Wan F.Y.M (2002). Do morphogen gradients arise by diffusion?. Dev Cell 2: 785–796 CrossRefGoogle Scholar
  13. 13.
    Lander A.D., Nie Q. and Wan F.Y.M. (2005). Spatially distributed morphogen production and morphogen gradient formation. Math. Biosci. Eng. 2(2): 239–262 zbMATHMathSciNetGoogle Scholar
  14. 14.
    Lawrence P.A. and Struhl G. (1996). Morphogens, compartments and pattern: lessons from Drosophila. Cell 85: 951–961 CrossRefGoogle Scholar
  15. 15.
    Lecuit T. and Cohen S.M. (1998). Dpp receptor levels contribute to shaping the dpp morphogen gradient in the Drosophila wing imaginal disc. Development 125: 4901–4907 Google Scholar
  16. 16.
    Lighthill J. (1996). An Informal Introduction to Theoretical Fluid Mechanics. IMA monograph series; 2. Oxford University Press, New York Google Scholar
  17. 17.
    Mannervik M., Nibu Y., Zhang H. and Levine M. (1999). Transcriptional coregulators in development. Science 284: 606–609 CrossRefGoogle Scholar
  18. 18.
    Martín F.A., Pérez-Garijo A., Moreno E. and Morata G. (2004). The brinker gradient controls wing growth in Drosophila. Development 131: 4921–4930 CrossRefGoogle Scholar
  19. 19.
    Martín-Castellanos C. and Edgar B.A. (2002). A characterisation of the effects of Dpp signalling on cell growth and proliferation in the Drosophila wing. Development 129: 1003–1013 Google Scholar
  20. 20.
    Numerical Algorithms Group, D03PEF - NAG Fortran library routine documentGoogle Scholar
  21. 21.
    Rogulja D. and Irvine K.D. (2005). Regulation of cell proliferation by a morphogen gradient. Cell 123: 449–461 CrossRefGoogle Scholar
  22. 22.
    Tabata T. (2001). Genetics of morphogen gradients. Nat. Rev. Genet. 2: 620–630 CrossRefGoogle Scholar
  23. 23.
    Telemann A.A. and Cohen S.M. (2000). Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103: 971–980 CrossRefGoogle Scholar
  24. 24.
    Tickle C. (1999). Morphogen gradients in vertebrate limb development. Cell Dev. Biol. 10: 345–351 CrossRefGoogle Scholar
  25. 25.
    Tsuneizumi K., Nakayama T., Kamoshida Y., Kornberg T.B., Christian J.L. and Tabata T. (1997). Daughters against dpp modulates dpp organising activity in Drosophila wing development. Nature 389: 627–631 CrossRefGoogle Scholar
  26. 26.
    Twyman R.M. (2001). Developmental Biology. INSTANT NOTES. BIOS, Oxford Google Scholar
  27. 27.
    Wharton K.A., Ray R.P. and Gelbart W.M. (1993). An activity gradient of Decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117: 807–822 Google Scholar
  28. 28.
    Wolpert L. (1969). Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25(1): 1–47 CrossRefGoogle Scholar
  29. 29.
    Wolpert L., Beddington R., Jessell T., Lawrence P., Meyerowitz E. and Smith J. (2002). Principles of Development, 2nd edn. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Centre for Mathematical BiologyMathematical InstituteOxfordUK
  2. 2.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations