Journal of Mathematical Biology

, Volume 54, Issue 3, pp 407–451 | Cite as

Prediction of predator–prey populations modelled by perturbed ODEs

  • Sorana FrodaEmail author
  • Sévérien Nkurunziza


In this paper we explore a stochastic model in continuous time for predator–prey interactions, which accounts for the periodical behaviour observed in many animal populations. More precisely, we consider a solution to the classical Lotka–Volterra system of equations, but we view the actual population sizes as random perturbations of the solutions to this ODE system. Namely, we assume that the perturbations follow correlated Ornstein–Uhlenbeck processes; this approach generalizes the one of Froda and Colavita [Aust N Z J Stat 2:235–254, 2005] who considered only i.i.d. errors. This type of perturbed deterministic model allows to perform parameter estimation and to predict population sizes at future times. On the other hand, the present model refines the previous one since it takes into account the variability due to external factors and the time dependence in the random component. Moreover, this more flexible model improves the predictions of population sizes at future times. In order to illustrate this last point, we analyse two data sets.


Predator–prey system of differential equations Closed orbit Periodic solutions Correlated Ornstein–Uhlenbeck processes Weighted least squares Estimation and prediction Stochastic calculus 

Mathematics Subject Classification (2000)

Primary 62M10 Secondary 92D25 Secondary 62P10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billingsley P. (1995) Probability and measure. 3rd edn. Wiley, New YorkzbMATHGoogle Scholar
  2. 2.
    Boyce M.S. (2000) Modeling predator–prey dynamics. In: Boitani L., Fuller T.K.(eds) Research Techniques in Animal Ecology: Controversies and Consequences. Columbia University Press, New York, pp. 253–287Google Scholar
  3. 3.
    Brillinger D.R. (1981) Some aspects of modern population mathematics. Can. J. Stat. 9, 173–194zbMATHMathSciNetGoogle Scholar
  4. 4.
    Brockwell P.J., Davis R.A. (1991) Time Series: Theory and Methods, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. 5.
    Bulmer M.G. (1974) A statistical analysis of the 10-year cycle in Canada. J. Anim. Ecol. 43, 701–718CrossRefGoogle Scholar
  6. 6.
    Ellner S.P., Seifu Y., Smith R.H. (2002) Fitting population dynamic models to time-series data by gradient-matching. Ecology 83, 2256–2270CrossRefGoogle Scholar
  7. 7.
    Froda S., Colavita G. (2005) Estimating predator–prey systems via ordinary differential equations with closed orbits. Aust. N.Z. J. Stat. 2, 235–254CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gard T.C. (1988) Introduction to stochastic differential equations. Marcel Dekker, New YorkzbMATHGoogle Scholar
  9. 9.
    Gard T.C., Kannan D. (1976) On a stochastic differential equation modeling of predator–prey interaction. J. Appl. Prob. 13, 429–443zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Godambe V.P. (1991) Estimating functions. Clarendon Press, OxfordzbMATHGoogle Scholar
  11. 11.
    Guikhman I.I., Skorohod V. (1980) Introduction à la théorie des processus aléatoires. Mir, MoscouGoogle Scholar
  12. 12.
    Heyde C. (1997) Quasi-Likelihood and its Applications: A general Approach to Optimal Parameter Estimation. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  13. 13.
    Hirsch M., Smale S. (1974) Differential Equations, Dynamical Systems and Linear Algebra. Academic, New YorkzbMATHGoogle Scholar
  14. 14.
    Jost C., Arditi R. (2000) Identifying predator–prey processes from time series. Theor. Popul. Biol. 57, 325–337zbMATHCrossRefGoogle Scholar
  15. 15.
    Jost C., Arditi R. (2001) From pattern to processes: identifying predator–prey models from time series data. Popul. Ecol. 43, 229-243CrossRefGoogle Scholar
  16. 16.
    Kendall B.E., Briggs C.J., Murdoch W.W., Turchin P., Ellner S.P., McCauley E., Nisbet R., Wood S.N. (1999) Why do populations cycle?. A synthesis of statistical and mechanistic modeling approaches. Ecology 80, 1789–1805CrossRefGoogle Scholar
  17. 17.
    Lim K.S., Tong H. (1980) A statistical approach to difference-delay equation modelling in ecology – two case studies. J. Time Ser. 4, 239–267MathSciNetGoogle Scholar
  18. 18.
    Lotka A.J. (1925) Elements of Physical Biology. Williams and Wilkins, BaltimorezbMATHGoogle Scholar
  19. 19.
    Luckinbill L. (1973) Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum. Ecology 56, 1320–1327CrossRefGoogle Scholar
  20. 20.
    Nkurunziza, S.: Inférence statistique dans certains systèmes écologiques : système proie-prédateur. Ph. D. thesis, UQAM (2005)Google Scholar
  21. 21.
    Renshaw E. (1991) Modelling Biological Populations in Space and Time. Cambridge University Press, CambridgezbMATHGoogle Scholar
  22. 22.
    Royden H.I. (1988) Real Analysis, 3rd edn. Macmillan, New YorkzbMATHGoogle Scholar
  23. 23.
    Shiryaev A.N. (1984) Probability, 2nd edn. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  24. 24.
    Steele J.M. (2001) Stochastic calculus and financial applications. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  25. 25.
    Stout F.W. (1974) Almost sure convergence. Academic, New YorkzbMATHGoogle Scholar
  26. 26.
    Tong H., Lim K.S. (1980) Threshold autoregression, limit cycles and cyclical data. J. R. Stat. Soc. Ser B 42, 245–292zbMATHGoogle Scholar
  27. 27.
    Volterra, V.: Leçons sur la théorie mathématique de la lutte pour la vie. Gauthiers-Villars (1931)Google Scholar
  28. 28.
    Zengjing C., Kulperger R. (2005) A stochastic competing-species model and ergodicity. J. Appl. Probab. 42, 738–753zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Département de mathématiquesUniversité du Québec à MontréalMontrealCanada
  2. 2.Department of Mathematics and StatisticsUniversity of WindsorWindsorCanada

Personalised recommendations