Journal of Mathematical Biology

, Volume 53, Issue 4, pp 703–718 | Cite as

The minimum effort required to eradicate infections in models with backward bifurcation

Article

Abstract

We study an epidemiological model which assumes that the susceptibility after a primary infection is r times the susceptibility before a primary infection. For r = 0 (r = 1) this is the SIR (SIS) model. For r  >  1  +  (μ/α) this model shows backward bifurcations, where μ is the death rate and α is the recovery rate. We show for the first time that for such models we can give an expression for the minimum effort required to eradicate the infection if we concentrate on control measures affecting the transmission rate constant β. This eradication effort is explicitly expressed in terms of α,r, and μ As in models without backward bifurcation it can be interpreted as a reproduction number, but not necessarily as the basic reproduction number. We define the relevant reproduction numbers for this purpose. The eradication effort can be estimated from the endemic steady state. The classical basic reproduction number R0 is smaller than the eradication effort for r > 1 + (μ/α) and equal to the effort for other values of r. The method we present is relevant to the whole class of compartmental models with backward bifurcation.

Keywords

Epidemic model Backward bifurcation Reproduction numbers Eradication effort 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brauer F. (2004). Backward bifurcations in simple vaccination models. J. Math. Anal. Appl. 298:418–431MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    van Boven M., Mooi F.R., Schellekens J.F.P., de Melker H.E., Kretzschmar M. (2005). Pathogen adaptation under imperfect vaccination: implications for pertussis. Proc. R. Soc. Lond. B 272:1617–1624CrossRefGoogle Scholar
  3. 3.
    Castillo-Chavez C., Song B. (2004). Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1:361–404MATHMathSciNetGoogle Scholar
  4. 4.
    Diekmann O., Heesterbeek J.A.P. (2000). Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, ChichesterGoogle Scholar
  5. 5.
    Diekmann O., Heesterbeek J.A.P., Metz J.A.J. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    van den Driessche P., Watmough J. (2000). A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40:525–540MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hadeler K.P., Castillo-Chavez C. (1995). A core group model for disease transmission. Math. Biosci. 128:41–55MATHCrossRefGoogle Scholar
  8. 8.
    Hadeler KP., van den Driessche P. (1997). Backward bifurcation in epidemic control. Math. Biosci. 146:15–35MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hadeler K.P., Liberman U. (1975). Selection models with fertility differences. J. Math. Biol. 2:19–32MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Greenhalgh D., Diekmann O., de Jong M.C.M. (2000). Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math. Biosci. 165:1–25MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ineichen R., Batschelet E. (1975). Genetic selection and de Finetti diagrams. J. Math. Biol. 2:33–39MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kribs-Zaleta C.M. (2002). Center manifold and normal forms in epidemic models. In: Castillo-Chavez C. et al. (eds) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory, IMA 125. Springer pp. 269–286, New YorkGoogle Scholar
  13. 13.
    Kribs-Zaleta C.M., Martcheva M. (2002). Vaccination strategies and backward bifurcation in an age-since-infection structured model. Math. Biosci. 177178:317–332CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kribs-Zaleta C.M., Velasco-Hernandez J.X. (2000). A simple vaccination model with multiple states. Math. Biosci. 164:183–201MATHCrossRefGoogle Scholar
  15. 15.
    Moghadas S.M. (2004). Analysis of an epidemic model with bistable equilibria using the Poincaré index. Appl. Math. Comput. 149:689–702MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Moghadas S.M. (2004). Modelling the effect of imperfect vaccines on disease epidemiology. Discret Contin Dyn Syst-Ser B4:999–1012MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Safan M. (2006). Spread of infectious diseases: impact on demography, and the eradication effort in models with backward bifurcation. Dissertation, University of Tuebingen, GermanyGoogle Scholar
  18. 18.
    Seydel R. (1988). From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis. Elsvier, AmesterdamMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Muntaser Safan
    • 1
    • 2
  • Hans Heesterbeek
    • 3
  • Klaus Dietz
    • 1
  1. 1.Department of Medical BiometryEberhard-Karls-University TübingenTübingenGermany
  2. 2.Mathematics Department, Faculty of ScienceMansoura UniversityMansouraEgypt
  3. 3.Faculty of Veterinary MedicineUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations