Advertisement

Journal of Mathematical Biology

, Volume 54, Issue 2, pp 151–177 | Cite as

The Evolution of a Kleptoparasitic System under Adaptive Dynamics

  • M. Broom
  • J. Rychtář
Article

Abstract

Kleptoparasitism, the stealing of food items, is a common biological phenomenon which has been modelled mathematically in a series of recent papers. A common assumption, following early work, was that mixed strategy solutions were not possible. In this paper we consider the evolution of mixed strategies under adaptive dynamics and show that such mixed strategies can be stable solutions under certain assumptions. In particular we revisit the recent paper of Broom et al. (Bull math Biol 66, 1645–1658, 2004) which assumed pure solutions only, and reanalyze the model under this new formulation.

Keywords

Kleptoparasitism Adaptive dynamics CSS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnard C.J, Sibly R.M. (1981). Producers and scroungers: a general model and its application to captive flocks of house sparrows. Anim Behav 29:543–555CrossRefGoogle Scholar
  2. 2.
    Brockmann H.J., Barnard C.J. (1979). Kleptoparasitism in birds. Anim Behav 27:487–514CrossRefGoogle Scholar
  3. 3.
    Broom M., Ruxton G.D. (1998). Evolutionarily Stable stealing: Game theory applied to kleptoparasitism. Behav Ecol 9:397–403CrossRefGoogle Scholar
  4. 4.
    Broom M., Ruxton G.D. (2003). Evolutionarily Stable kleptoparasitism : consequences of different prey types. Behav Ecol 14:23–33CrossRefGoogle Scholar
  5. 5.
    Broom M., Luther R.M., Ruxton G.D. (2004). Resistance is useless? Extensions to the game theory of kleptoparasitism. Bull Math Biol 66:1645–1658CrossRefMathSciNetGoogle Scholar
  6. 6.
    Eshel I. (1983). Evolutionary and continuous stability. J Theoret Biol 103:99–111CrossRefMathSciNetGoogle Scholar
  7. 7.
    Furness R.W. (1987). Kleptoparasitism in seabirds. In: Croxall J.P. (eds) Seabirds: Feeding Ecology and Role in Marine Ecosystems. Cambridge University Press, LondonGoogle Scholar
  8. 8.
    Hofbauer J., Sigmund K. (1990). Adaptive dynamics and evolutionary stability. Appl Math Lett 3:75–79CrossRefMathSciNetGoogle Scholar
  9. 9.
    Holling C.S. (1959). Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398Google Scholar
  10. 10.
    Kitowski I. (2005). Sex skewed kleptoparasitic exploitation of common kestrel Falco tinnunculus: the role of hunting costs to victims and tactics of kleptoparasites. Folia Zool 54:371–378Google Scholar
  11. 11.
    Krebs J.R., Davies N.B. (1993) An introduction to Behavioural Ecology, 3rd ed. Blackwell, OxfordGoogle Scholar
  12. 12.
    Luther R.M., Broom M. (2004). Rapid convergence to an equilibrium state in kleptoparasitic populations. J Math Biol 48:325–339CrossRefMathSciNetGoogle Scholar
  13. 13.
    Luther, R.M., Broom, M., Ruxton, G.D.: Is food worth fighting for? ESS’s in mixed populations of kleptoparasites and foragers. Accepted by the Bull Math BiolGoogle Scholar
  14. 14.
    Maynard S.J. (1982). Evolution and the theory of games. Cambridge University Press, LondonMATHGoogle Scholar
  15. 15.
    Maynard S.J., Price G.R. (1973). The logic of animal conflict. Nature 246:15–18CrossRefGoogle Scholar
  16. 16.
    Metz J.A.J., Nisbet R.M., Geritz S.A.H. (1992). How should we define “fitness” for general ecological scenarios?. Trends Ecol Evol 7:198–202CrossRefGoogle Scholar
  17. 17.
    Metz J.A.J., Geritz S.A.H., Meszena G., Jacobs F.J.A., van Heerwaarden J.S (1996). Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction. In: van Strien S.J. and Veruyn Lunel S.M. (eds) stochastic and Spatial Structures of Dynamical Systems. Elsevier, Amsterdam, pp. 183–231Google Scholar
  18. 18.
    Nowak M., Sigmund K. (2004). Evolutionary Dynamics of Biological Games. Science 303:793–799CrossRefGoogle Scholar
  19. 19.
    Ohtsuki H. (2004). Reactive strategies in indirect reciprocity. J Theoret Biol 227:299–314CrossRefMathSciNetGoogle Scholar
  20. 20.
    Page K., Nowak M. (2002). Unifying evolutionary dynamics. J Theoret Biol 219:93–98MathSciNetGoogle Scholar
  21. 21.
    Ruxton G.D., Broom M. (1999). Evolution of kleptoparasitism as a war of attrition. J of Evol Biol 12:755–759CrossRefGoogle Scholar
  22. 22.
    Shealer D.A., Spendelow J.A. (2002). Individual foraging strategies of kleptoparasitic Roseate Terns Waterbirds 25:436–441Google Scholar
  23. 23.
    Stillman R.A., Goss-Custard J.D., Caldow R.W.G. (1997). Modelling interference from basic foraging behaviour. J Anim Ecol 66:692–703CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SussexBrightonUK
  2. 2.Department of Mathematical SciencesUniversity of North CarolinaGreensboroUSA

Personalised recommendations