Journal of Mathematical Biology

, Volume 52, Issue 5, pp 667–681 | Cite as

Evolutionary game dynamics in a Wright-Fisher process

Article

Abstract

Evolutionary game dynamics in finite populations can be described by a frequency dependent, stochastic Wright-Fisher process. We consider a symmetric game between two strategies, A and B. There are discrete generations. In each generation, individuals produce offspring proportional to their payoff. The next generation is sampled randomly from this pool of offspring. The total population size is constant. The resulting Markov process has two absorbing states corresponding to homogeneous populations of all A or all B. We quantify frequency dependent selection by comparing the absorption probabilities to the corresponding probabilities under random drift. We derive conditions for selection to favor one strategy or the other by using the concept of total positivity. In the limit of weak selection, we obtain the 1/3 law: if A and B are strict Nash equilibria then selection favors replacement of B by A, if the unstable equilibrium occurs at a frequency of A which is less than 1/3.

Keywords

Frequency dependent process Stochastic game dynamics Finite populations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antal, T., Scheuring, I.: Fixation of strategies for an evolutionary game in finite populations. Mimeo, Center for Polymer Studies and Department of Physics, Boston University, 2005Google Scholar
  2. 2.
    Binmore, K.: Game Theory and the Social Contract: Playing Fair. MIT Press, Cambridge, MA, 1993Google Scholar
  3. 3.
    Binmore, K.: Game Theory and the Social Contract: Just Playing. MIT Press, Cambridge, MA, 1998Google Scholar
  4. 4.
    Bürger, R.: The Mathematical Theory of Selection, Recombination, and Mutation. Wiley, Chichester, 2000Google Scholar
  5. 5.
    Corradi, V., Sarin, R.: Continuous approximations of stochastic evolutionary game dynamics. J. Econom. Theory 94, 163–191 (2000)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Dostálková, I., Kindlmann, P.: Evolutionarily stable strategies for stochastic processes. Theoret. Population Biol. 65, 205–210 (2004)CrossRefGoogle Scholar
  7. 7.
    Ewens, W.J.: Mathematical Population Genetics, I. Theoretical Introduction. Second edition. Springer, New York, 2004Google Scholar
  8. 8.
    Ficici, S., Pollack, J.: Effects of Finite Populations on Evolutionary Stable Strategies. Proceedings of the 2000 Genetic and Evolutionary Computation Conference, L. Darrell Whitley (ed.), Morgan-Kaufmann (2000)Google Scholar
  9. 9.
    Fogel, G., Andrews, P., Fogel, D.: On the instability of evolutionary stable strategies in small populations. Ecological Modeling 109, 283–294 (1998)CrossRefGoogle Scholar
  10. 10.
    Foster, D., Young, P.: Stochastic evolutionary game dynamics. Theoret. Population Biol. 38, 219–232 (1990)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Fudenberg, D., Harris, C.: Evolutionary dynamics with aggregate shocks. J. Econom. Theory 57, 420–441 (1992)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Fudenberg, D., Imhof, L.A., Nowak, M.A., Taylor, C.: Evolutionary game dynamics in finite populations with strong selection and weak mutation. Mimeo, Program for Evolutionary Dynamics, Harvard University, 2004.Google Scholar
  13. 13.
    Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge, MA, 1998Google Scholar
  14. 14.
    Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge, MA, 1991Google Scholar
  15. 15.
    Gintis, H.: Game Theory Evolving. Princeton University Press, 2000Google Scholar
  16. 16.
    Hofbauer, J., Schuster, P., Sigmund, K.: A note on evolutionarily stable strategies and game dynamics. J. Theoret. Biol. 81, 609–612 (1979)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, 1998Google Scholar
  18. 18.
    Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Amer. Math. Soc. 40, 479–519 (2003)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Imhof, L.A.: The long-run behavior of the stochastic replicator dynamics. Ann. Appl. Probab. 15, 1019–1045 (2005a)Google Scholar
  20. 20.
    Imhof, L.A.: Evolutionary game dynamics under stochastic influences. Jahresber. Deutsch. math.-verein. 107, 197–213 (2005b)Google Scholar
  21. 21.
    Imhof, L.A., Fudenberg D., Nowak, M.A.: Evolutionary cycles of cooperation and defection. Proc. Natl. Acad. Sci. USA 102, 10797–10800 (2005)CrossRefGoogle Scholar
  22. 22.
    Kandori, M., Mailath, G., Rob, R.: Learning, mutation, and long run equilibria in games. Econometrica 61, 29–56 (1993)MATHMathSciNetGoogle Scholar
  23. 23.
    Karlin, S.: Total Positivity. Stanford University Press, 1968Google Scholar
  24. 24.
    Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, Second edition. Academic Press, London, 1975Google Scholar
  25. 25.
    Maynard Smith, J.: Evolution and the Theory of Games, Cambridge University Press, 1982Google Scholar
  26. 26.
    Moran, P.A.P.: The Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford, 1962Google Scholar
  27. 27.
    Nowak, M.A., Sasaki, A., Taylor, C., Fudenberg, D.: Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 646–650 (2004)CrossRefGoogle Scholar
  28. 28.
    Nowak, M.A., Sigmund, K.: Evolutionary dynamics of biological games. Science 303, 793–799 (2004)CrossRefGoogle Scholar
  29. 29.
    Samuelson, L.: Evolutionary Games and Equilibrium Selection. MIT Press, Cambridge, MA, 1997Google Scholar
  30. 30.
    Schaffer, M.: Evolutionarily stable strategies for a finite population and a variable contest size. J. Theoret. Biol. 132, 469–478 (1988)MathSciNetGoogle Scholar
  31. 31.
    Schreiber, S.J.: Urn models, replicator processes, and random genetic drift. SIAM J. Appl. Math. 61, 2148–2167 (2001)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Seneta, E.: Non-negative Matrices and Markov Chains. Second edition. Springer, New York, 1981Google Scholar
  33. 33.
    Taylor, C., Fudenberg, D., Sasaki, A., Nowak, M.A.: Evolutionary game dynamics in finite populations. Bull. Math. Biol. 66, 1621–1644 (2004)CrossRefGoogle Scholar
  34. 34.
    Taylor, P.D., Jonker, L.B.: Evolutionarily stable strategies and game dynamics. Math. Biosciences 40, 145–156 (1978)CrossRefMATHGoogle Scholar
  35. 35.
    Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995Google Scholar
  36. 36.
    Wild, G., Taylor, P.D.: Fitness and evolutionary stability in game theoretic models of finite populations. Proc. R. Soc. Lond. B 271, 2345–2349 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Statistische AbteilungUniversität BonnBonnGermany
  2. 2.Program for Evolutionary Dynamics, Department of Mathematics, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations