Journal of Mathematical Biology

, Volume 52, Issue 4, pp 419–438 | Cite as

Global stability in a chemostat with multiple nutrients

  • Patrick De Leenheer
  • Simon A. Levin
  • Eduardo D. Sontag
  • Christopher A. Klausmeier
Article

Abstract

We study a single species in a chemostat, limited by two nutrients, and separate nutrient uptake from growth. For a broad class of uptake and growth functions it is proved that a nontrivial equilibrium may exist. Moreover, if it exists it is unique and globally stable, generalizing a result in [15].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butler, G.J., Wolkowicz, G.S.K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Caperon, J.: Population growth response of Isochrysis galbana to nitrate variation at limiting concentrations. Ecology 49, 866–872 (1968)CrossRefGoogle Scholar
  3. 3.
    Clodong, S., Blasius, B.: Chaos in a periodically forced chemostat with algal mortality. Proc. R. Soc. of Lond. B 271, 1617–1624 (2004)CrossRefGoogle Scholar
  4. 4.
    Droop, M.R.: Vitamin B12 and marine ecology. 4. The kinetics of uptake, growth and inhibition of Monochyrsis lutheri. J. Mar. Biol. Assoc. UK 48, 689–733 (1968)Google Scholar
  5. 5.
    Droop, M.R.: The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. UK 54, 825–855 (1974)CrossRefGoogle Scholar
  6. 6.
    Droop, M.R.: Twenty-five years of algal growth kinetics, a personal view. Bot. Mar. 26, 99–112 (1983)CrossRefGoogle Scholar
  7. 7.
    Huisman, J., Weissing, F.J.: Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999)CrossRefGoogle Scholar
  8. 8.
    Hsu, S.B., Cheng, K.S., Hubbell, S.P.: Exploitative competition of microorganism for two complementary nutrients in continuous culture. SIAM J. Appl. Math. 41, 422–444 (1981)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Jang, S.R.-J., Baglama, J.: Qualitative behavior of a variable-yield simple food chain with an inhibiting nutrient. Math. Biosci. 164, 65–80 (2000)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jiang, J.F.: On the global stability of cooperative systems. B. Lond. Math. Soc. 6, 455–458 (1994)Google Scholar
  11. 11.
    Kot, M., Sayler, G.S., Schultz, T.W.: Complex dynamics in a model microbial system. B. Math. Biol. 54, 619–648 (1992)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Klausmeier, C.A., Litchman, E., Levin, S.A.: Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol. Oceanogr. 49, 1463–1470 (2004)CrossRefGoogle Scholar
  13. 13.
    Klausmeier, C.A., Litchman, E., Daufresne, T., Levin, S.A.: Optimal N:P stoichiometry of phytoplankton. Nature 429, 171–174 (2004)CrossRefGoogle Scholar
  14. 14.
    Lange, K., Oyarzun, F.J.: The attractiveness of the Droop equations. Mathe. Biosci. 111, 261–278 (1992)CrossRefMATHGoogle Scholar
  15. 15.
    Legović, T., Cruzado, A.: A model of phytoplankton growth on multiple nutrients based on the Michaelis-Menten-Monod uptake, Droop's growth and Liebig's law. Ecol. Model. 99, 19–31 (1997)CrossRefGoogle Scholar
  16. 16.
    Leon, J.A., Tumpson, D.B.: Competition between two species for two complementary or substitutable resources. J. Theor. Biol. 50, 185–201 (1975)CrossRefGoogle Scholar
  17. 17.
    Li, B.: Periodic coexistence in the chemostat with three species competing for three essential resources. Math. Biosci. 174, 27–40 (2001)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Li, B., Smith, H.L.: How many species can two essential resources support? SIAM J. Appl. Math. 62, 336–366 (2001)MATHGoogle Scholar
  19. 19.
    Li, B., Smith, H.L.: Competition for essential resources: a brief review. Dynamical Systems and Their Applications in Biology. Edited by S. Ruan, G.S.K Wolkowicz, J. Wu. Fields Institute Communications 36, 213–227 (2003)Google Scholar
  20. 20.
    Li, B., Smith, H.L.: Periodic coexistence of four species competing for three essential resources. Math. Biosci. 184, 115–134 (2003)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Monod, J.: La technique de culture continue; theorie et applications. Ann. Inst. Pasteur 79, 390–410 (1950)Google Scholar
  22. 22.
    Oyarzun, F.J., Lange, K.: The attractiveness of the Droop equations II. Generic uptake and growth functions. Math. Biosci. 111, 261–278 (1992)MATHMathSciNetGoogle Scholar
  23. 23.
    Pascual, M.: Periodic response to periodic forcing of the Droop equations for phytoplankton growth. J. Math. Biol. 32, 743–759 (1994)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Pascual, M., Caswell, H.: From the cell cycle to population cycles in phytoplankton-nutrient interactions. Ecology 78, 897–912 (1997)CrossRefGoogle Scholar
  25. 25.
    Rhee, G.-Y.: Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnol. Oceanogr. 23, 10–25 (1978)CrossRefGoogle Scholar
  26. 26.
    Smith, H.L., Waltman, P.: Competition for a single limiting resource in continuous culture: The varibale-yield model. SIAM J. Appl. Math. 54, 1113–1131 (1994)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Smith, H.L.: Monotone dynamical systems. American Mathematical Society. Providence, Rhode Island, 1995Google Scholar
  28. 28.
    Smith, H.L.: The periodically forced Droop model for phytoplankton growth in a chemostat. J. Math. Biol. 35, 545–556 (1997)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Smith, H.L., Waltman, P.: The Theory of the Chemostat. Cambridge University Press, 1995Google Scholar
  30. 30.
    Sontag, E.D.: Remarks on stabilization and factorization. Proc. IEEE Conf. Dec. Control, 1989, pp. 1376–1378Google Scholar
  31. 31.
    Sontag, E.D.: A remark on the converging-input converging-state property. IEEE Trans. Automatic Control 48, 313–314 (2003)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Tilman, D.: Resource Competition and Community Structure. Princeton University Press, 1982Google Scholar
  33. 33.
    Turpin, D.H.: Physiological mechanisms in phytoplankton resource competition. In: C.D. Sandgren, (ed.) ``Growth and Reproductive Strategies of Freshwater Phytoplankton, Cambridge University Press, 1988, pp. 316–368Google Scholar
  34. 34.
    Wolkowicz, G.S.K.,Lu, Z.: Global dynamics of a mathematical model of competition in the chemostat: General response function and differential death-rates. SIAM J. Appl. Math. 52, 222–233 (1992)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Patrick De Leenheer
    • 1
  • Simon A. Levin
    • 2
  • Eduardo D. Sontag
    • 3
  • Christopher A. Klausmeier
    • 4
  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA
  2. 2.Princeton UniversityUSA
  3. 3. RutgersUSA
  4. 4.Georgia Institute of TechnologyUSA

Personalised recommendations