Journal of Mathematical Biology

, Volume 51, Issue 5, pp 508–526 | Cite as

A delay recruitment model of the cardiovascular control system

  • A.C. Fowler
  • M.J. McGuinnessEmail author


We develop a nonlinear delay-differential equation for the human cardiovascular control system, and use it to explore blood pressure and heart rate variability under short-term baroreflex control. The model incorporates an intrinsically stable heart rate in the absence of nervous control, and allows us to compare the baroreflex influence on heart rate and peripheral resistance. Analytical simplifications of the model allow a general investigation of the rôles played by gain and delay, and the effects of ageing.

Key words or phrases

Mathematical model Mayer waves Baroreflex control Cardiovascular Heart rate variability Hypertension Ageing Delay differential equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbiw-Jackson, R.M., Langford, W.F.: Gain-induced oscillations in blood pressure. J. Math. Biol. 37, 203–234 (1998)CrossRefPubMedGoogle Scholar
  2. 2.
    Berne, R.M., Levy, M.N.: Principles of Physiology. (Mosby-Year Book, Second Edn, 1996)Google Scholar
  3. 3.
    Bertram, D., Barres, C., Cheng, Y., Julien, C.: Norepinephrine reuptake, baroreflex dynamics, and arterial pressure variability in rats. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 279 (4), R1257–R1267 (2000)Google Scholar
  4. 4.
    Bertram, D., Barres, C., Cuisinard, G., Julien, C.: The arterial baroreceptor reflex of the rat exhibits positive feedback properties at the frequency of Mayer waves. J. Physiol. - London 513 (1), 251–261 (1998)CrossRefGoogle Scholar
  5. 5.
    Bertram, D., Barres, C., Julien, C.: Effect of desipramine on spontaneous arterial pressure oscillations in the rat. Eur. J. Pharmacology 378 (3), 265–271 (1999)CrossRefGoogle Scholar
  6. 6.
    Burgess, D.E., Hundley, J.C., Li, S-G., Randall, D.C., Brown, D.R.: First-order differential-delay equation for the baroreflex predicts the 0.4-Hz blood pressure rhythm in rats. Am. J. Physiol. 273, R1878–R1884 (1997)Google Scholar
  7. 7.
    Cavalcanti, S., Ursino, M.: Dynamical modelling of sympathetic and parasympathetic interplay on the baroreceptor heart rate control. Surv. Math. Ind. 7, 221–237 (1997)Google Scholar
  8. 8.
    Cevese, A., Gulli, G., Polati, E., Gottin, L., Grasso, R.: Baroreflex and oscillation of heart period at 0.1 Hz studied by α-blockade and cross-spectral analysis in healthy humans. J. Physiol. 531 (1), 235–244 (2001)Google Scholar
  9. 9.
    Chow, S.-N., Mallet-Paret, J.: Singularly perturbed delay-differential equations. In: Coupled Nonlinear Oscillators, J. Chandra, A.C. Scott (eds.), North-Holland, 1983Google Scholar
  10. 10.
    Cooley, R.L., Montano, N., Cogliati, C., van de Borne, P., Richenbacher, W., Oren, R., Somers, V.K.: Evidence for a central origin of the low-frequency oscillation in RR-interval variability. Circulation 98, 556–561 (1998)PubMedGoogle Scholar
  11. 11.
    deBoer, R.W., Karemaker, J.M., Strackee, J.: Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am. J. Physiol. 253 (Heart Circ. Physiol. 22), 680–689 (1987)Google Scholar
  12. 12.
    Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.-O.: Delay Equations: Functional, Complex and Nonlinear Analysis. Appl. Math. Sci. 110, Springer, 1995Google Scholar
  13. 13.
    Fowler, A.C.: Mathematical Models in the Applied Sciences. Cambridge Texts in Applied Mathematics, CUP 1997Google Scholar
  14. 14.
    Gebber, G.L., Zhong, S., Zhou, S.-Y., Barman, S.M.: Nonlinear dynamics of the frequency locking of baroreceptor and sympathetic rhythms. Am. J. Physiol. 273 (Regulatory Integrative Comp. Physiol. 42), R1932–R1945 (1997)Google Scholar
  15. 15.
    Girard, A., Meilhac, B., Mouniervehier, C., Elghozi, J.L.: Effects of beta-adrenergic-blockade on short-term variability of blood-pressure and heart rate in essential hypertension. Clinical & Exp. Hypertension 17 (Iss 1-2), 15–27 (1995)Google Scholar
  16. 16.
    Greenwood, J.P., Stoker, J.B., Mary, D.: Single-unit sympathetic discharge –- quantitative assessment in human hypertensive disease. Circulation 100, 1305–1310 (1999)PubMedGoogle Scholar
  17. 17.
    Grodins, F.S.: Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Q. Rev. Biol. 34, 93–116 (1959)CrossRefPubMedGoogle Scholar
  18. 18.
    Guyton, A.: Textbook of Medical Physiology. (W.B. Saunders Co., London, 1981)Google Scholar
  19. 19.
    Guyton, A.C., Harris, J.W.: Pressoreceptor-autonomic oscillation: a probable cause of vasomotor waves. Am. J. Physiol. 165, 158–166 (1951)PubMedGoogle Scholar
  20. 20.
    Kaplan, D.T., Furman, M.I., Pincus, S.M., Ryan, S.M., Lipsitz, L.A., Goldberger, A.L.: Aging and the complexity of cardiovascular dynamics. Biophys. J. 59, 945–949 (1991)PubMedGoogle Scholar
  21. 21.
    Korner, P.: Integrative neural cardiovascular control. Physiol. Rev. 51 (2), 312–367 (1971)Google Scholar
  22. 22.
    Libsitz, L.A., Goldberger, A.L.: Loss of complexity and aging: Potential applications of fractals and chaos theory to senescence. JAMA 267, 1806–1809 (1992)CrossRefPubMedGoogle Scholar
  23. 23.
    Liu, H-K., Guild, S-J., Ringwood, J.V., Barrett, C.J., Leonard, B.L., Nguang, S-K., Navakatikyan, M.A., Malpas, S.C.: Dynamic baroreflex control of blood pressure: influence of the heart vs. peripheral resistance. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 283, R533–R542 (2002)Google Scholar
  24. 24.
    Madwed, J.B., Albrecht, P., Mark, R.G., Cohen, R.J.: Low frequency oscillations in arterial pressure and heart rate: a simple computer model. Am. J. Physiol. 256, H1573–H1579 (1989)Google Scholar
  25. 25.
    Magosso, E., Biavati, V., Ursino, M.: Role of the baroreflex in cardiovascular instability: a modeling study. Cardiov. Eng. 1 (2), 101–115 (2001)CrossRefGoogle Scholar
  26. 26.
    Malpas, S.C.: Neural influences on cardiovascular variability: possibilities and pitfalls. Am. J. Physiol. Heart Circ. Physiol. 282, H6–H20 (2002)Google Scholar
  27. 27.
    Montano, N., Gnecchi-Ruscone, T., Porta, A., Lombardi, F., Malliani, A., Barman, S.M.: Presence of vasomotor and respiratory rhythms in the discharge of single medullary neurons involved in the regulation of cardiovascular system. J. Auton. Nerv. Syst. 57, 116–122 (1996)CrossRefPubMedGoogle Scholar
  28. 28.
    Murray, J.D.: Mathematical biology. I: an introduction. (Springer-Verlag, Berlin 2002), pp. 23–27Google Scholar
  29. 29.
    Ottesen, J.T.: Modelling of the baroreflex-feedback mechanism with time-delay. J. Math. Biol. 36, 41–63 (1997)CrossRefPubMedGoogle Scholar
  30. 30.
    Ottesen, J.T., Olufsen, M.S., Larsen, J.K.: Applied Mathematical Models in Human Physiology. SIAM Monographs on Mathematical Modelling and Computation, 2004Google Scholar
  31. 31.
    Ringwood, J.V., Malpas, S.C.: Slow oscillations in blood pressure via a nonlinear feedback model. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 280, R1105–R1115 (2001)Google Scholar
  32. 32.
    Rosenblum, M., Kurths, J.: A model of neural control of the heart rate. Physica A 215, 439–450 (1995)CrossRefGoogle Scholar
  33. 33.
    Rowel, L.B.: Human Cardiovascular Control. Oxford University Press, 1993Google Scholar
  34. 34.
    Seidel, H., Herzel, H.: Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex. Physica D 115, 145–160 (1998)CrossRefGoogle Scholar
  35. 35.
    Singh, N., Prasad, S., Singer, D.R., MacAllister, R.J.: Ageing is associated with impairment of nitric oxide and prostanoid dilator pathways in the human forearm. Clin. Sci. (Lond). 102 (5), 595–600 (2002)Google Scholar
  36. 36.
    Ursino, M.: Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am. J. Physiol. 275 (Heart Circ. Physiol. 44), H1733–H1747 (1998)Google Scholar
  37. 37.
    Ursino, M., Antonucci, M., Belardinelli, E.: Role of active changes in venous capacity by the carotid baroreflex: analysis with a mathematical model. Am. J. Physiol. 267 (Heart Circ. Physiol. 36), H2531–H2546 (1994)Google Scholar
  38. 38.
    Ursino, M., Fiorenzi, A., Belardinelli, E.: The role of pressure pulsatility in the carotid baroreflex control: a computer simulation study. Comput. Biol. Med. 26 (4), 297–314 (1996)CrossRefGoogle Scholar
  39. 39.
    Wattis, J.A.D.: Bifurcations and Chaos in a Differential-Delay Equation, an MSc Dissertation in Mathematical Modelling and Numerical Analysis, University of Oxford, September 1990Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordUnited Kingdom
  2. 2.Division of Applied MathematicsKorea Advanced Institute of Science and TechnologyTaejonSouth Korea

Personalised recommendations