Advertisement

Journal of Mathematical Biology

, Volume 51, Issue 4, pp 431–457 | Cite as

Gene algebra from a genetic code algebraic structure

  • R. SanchezEmail author
  • E. Morgado
  • R. Grau
Article

Abstract

By considering two important factors involved in the codon-anticodon interactions, the hydrogen bond number and the chemical type of bases, a codon array of the genetic code table as an increasing code scale of interaction energies of amino acids in proteins was obtained. Next, in order to consecutively obtain all codons from the codon AAC, a sum operation has been introduced in the set of codons. The group obtained over the set of codons is isomorphic to the group (Z64, +) of the integer module 64. On the Z64-algebra of the set of 64 N codon sequences of length N, gene mutations are described by means of endomorphisms f:(Z64) N →(Z64) N . Endomorphisms and automorphisms helped us describe the gene mutation pathways. For instance, 77.7% mutations in 749 HIV protease gene sequences correspond to unique diagonal endomorphisms of the wild type strain HXB2. In particular, most of the reported mutations that confer drug resistance to the HIV protease gene correspond to diagonal automorphisms of the wild type. What is more, in the human beta-globin gene a similar situation appears where most of the single codon mutations correspond to automorphisms. Hence, in the analyses of molecular evolution process on the DNA sequence set of length N, the Z64-algebra will help us explain the quantitative relationships between genes.

Key words or phrases

Gene algebra Genetic code algebra Molecular evolution process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alf-Steinberger, C.: The genetic code and error transmission. Proc. Natl. Acad. Sci. USA, 64, 584–591 (1969)Google Scholar
  2. 2.
    Arques, D.G., Michel, C.J.: “A complementary circular code in the protein coding genes”. J. Theor. Biol. 182, 45–58 (1996)CrossRefPubMedGoogle Scholar
  3. 3.
    Balakrishnan, J.: Symmetry scheme for amino acid codons. Phys. Rev. E, 65, 021912–5 (2002)Google Scholar
  4. 4.
    Bashford, J.D., Tsohantjis, I., Jarvis, P.D.: A supersymmetric model for the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 95, 987–992 (1998)CrossRefPubMedGoogle Scholar
  5. 5.
    Bashford, J.D., Jarvis P.D.: The genetic code as a periodic table. Biosystems 57, 147–161 (2000)CrossRefPubMedGoogle Scholar
  6. 6.
    Beland, P., Allen, T.F.: The origin and evolution of the genetic code. J Theor Biol. 170, 359–365 (1994)CrossRefPubMedGoogle Scholar
  7. 7.
    Bertman, M.O., Jungck, J.R.: Group graph of the genetic code. J. Hered. 70, 379–384 (1979)PubMedGoogle Scholar
  8. 8.
    Birkhoff, G., MacLane, S.: A survey of Modern Algebra. The Macmillan Company. New York (1941)Google Scholar
  9. 9.
    Chechetkin, V.R. “Block structure and stability of the genetic code”. J. Theor. Biol. 222, 177–188 (2003)Google Scholar
  10. 10.
    Crick, F.H.C.: The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968)CrossRefPubMedGoogle Scholar
  11. 11.
    Duret, L., Mouchiroud, D.: Expression pattern and, surprisingly, gene length, shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci 96, 17–25 (1999)CrossRefGoogle Scholar
  12. 12.
    Epstein, C. J.: Role of the amino-acid “code” and of selection for conformation in the evolution of proteins. Nature 210, 25–28 (1966)PubMedGoogle Scholar
  13. 13.
    Frappat, L., Sciarrino A. and Sorba, P. “A crystal base for the genetic code” Phys. Lett. A250, 214–221 (1998)Google Scholar
  14. 14.
    Freeland, S. J., Hurst, L. D.: The genetic code is one in a million. J. Mol. Evol. 47, 238–248 (1998)PubMedGoogle Scholar
  15. 15.
    Freeland, S.J., Knight, R.D., Landweber, L.F., Hurst, L.D.: Early fixation of an optimal genetic code. Mol. Biol. Evol. 17, 511–518 (2000)PubMedGoogle Scholar
  16. 16.
    Friedman, S.M., Weinstein, I..B.: Lack of fidelity in the translation of ribopolynucleotides. Proc Natl Acad Sci USA 52, 988–996 (1964)PubMedGoogle Scholar
  17. 17.
    Fuglsang, A.: Strong associations between gene function and codon usage. APMIS 111, 843–847 (2003)PubMedGoogle Scholar
  18. 18.
    Gillis, D., Massar, S., Cerf, N.J., Rooman, M.: Optimality of the genetic code with respect to protein stability and amino acid frequencies. Genome Biology 2, research0049.1 –research0049.12 (2001)Google Scholar
  19. 19.
    Grantham R.: Amino Acid Difference Formula to Help Explain Protein Evolution. Science, 185, 862–864 (1974)Google Scholar
  20. 20.
    Gu, W., Zhou, T., Ma, J., Sun, X., Lu, Z.: The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens. Biosystems 73, 89–97 (2004)PubMedGoogle Scholar
  21. 21.
    Gupta, S.K., Majumdar, S., Bhattacharya, K., Ghosh, T.C.: Studies on the relationships between synonymous codon usage and protein secondary structure. Biochem. Biophys. Res. Comm. 269, 692–696 (2000)CrossRefPubMedGoogle Scholar
  22. 22.
    He, M., Petoukhov, S.V., Ricci, P.E.: Genetic Code, Hamming Distance and Stochastic Matrices. Bull. Math. Biol. 66, 1405–1421 (2004)CrossRefPubMedGoogle Scholar
  23. 23.
    Jiménez-Montaño, M.A.: The hypercube structure of the genetic code explains conservative and non-conservative amino acid substitutions in vivo and in vitro. Biosystems 39, 117–125 (1996)CrossRefPubMedGoogle Scholar
  24. 24.
    Jiménez-Montaño, M.A.: Protein Evolution Drives the Evolution of the Genetic Code and Vice Versa. BioSystems 54, 47–64 (1999)CrossRefPubMedGoogle Scholar
  25. 25.
    Jukes, T.H., Osawa, S.: Evolutionary changes in the genetic code. Comp Biochem. Physiol. B. 106, 489–494 (1993)CrossRefPubMedGoogle Scholar
  26. 26.
    Jungck, J.R.: “The genetic code as a periodic tables”. J.Mol.Evol. 11, 211–224 (1978)CrossRefPubMedGoogle Scholar
  27. 27.
    Karasev, V.A., Stefanov, V.E.: Topological Nature of the Genetic Code. J. Theor. Biol. 209, 303–317 (2001)CrossRefPubMedGoogle Scholar
  28. 28.
    Kauzmann, W.: Some factors in the interpretation of protein denaturation. Advances in Protein Chemistry, Vol. 14, 1–63 (1959)Google Scholar
  29. 29.
    Kostrikin, A.I.: Introducción al algebra. Editorial MIR, Moscú 1980Google Scholar
  30. 30.
    Lehmann, J.: Physico-chemical Constraints Connected with the Coding Properties of the Genetic System. J. Theor. Biol. 202, 129–144 (2000)CrossRefPubMedGoogle Scholar
  31. 31.
    Lewin, B.: Genes VIII. Oxford University Press. 2004Google Scholar
  32. 32.
    Makrides, S.C.: Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60, 512–538 (1996)PubMedGoogle Scholar
  33. 33.
    Miyazawa, S., Jernigan, R. L.: Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules, 18, 534–552 (1985)Google Scholar
  34. 34.
    Miyazawa, S., Jernigan R.L.: Residue–Residue Potentials with a Favorable Contact Pair Term and an Unfavorable High Packing Density Term, for Simulation and Threading. J. Mol. Biol. 256, 623–644 (1996)CrossRefPubMedGoogle Scholar
  35. 35.
    Nakamura Y, Gojobori T, and Ikemura T. Codon usage tabulated from international DNA sequence database: status for the year 2000. Nucleic Acids Research 28, 292 (2000)CrossRefPubMedGoogle Scholar
  36. 36.
    Oresic. M., Shalloway, D.: Specific correlations between relative synonymous codon usage and protein secondary structure. J Mol. Biol. 281, 31–48 (1998)CrossRefPubMedGoogle Scholar
  37. 37.
    Osawa, S., Jukes, T.H., Watanabe, K., Muto, A.: Recent evidence for evolution of the genetic code. Microbiol Rev. 56, 229–264 (1992)PubMedGoogle Scholar
  38. 38.
    Parker, J.: Errors and alternatives in reading the universal genetic code. Microbiol Rev. 53, 273–298 (1989)PubMedGoogle Scholar
  39. 39.
    Redéi, L.: Algebra, Vol. 1. Akadémiai Kiadó, Budapest (1967)Google Scholar
  40. 40.
    Rose, G.D., Geselowitz A.R., Lesser G.J., Lee R.H., Zehfus M.H.: Hydrophobicity of Amino Acids Residues in Globular Proteins. Science 229, 834–838 (1985)PubMedGoogle Scholar
  41. 41.
    Sánchez, R., Morgado, E., Grau, R.: The Genetic Code Boolean Lattice. MATCH Commun. Math. Comput. Chem 52, 29–46 (2004)Google Scholar
  42. 42.
    Sánchez, R., Morgado, E., Grau, R.: A Genetic Code Boolean Structure. I. The Meaning of Boolean Deductions. Bull. Math. Biol. 67, 1–14 (2005)CrossRefGoogle Scholar
  43. 43.
    Shoda K.: Über die Automorphismen Einer Endlichen Abelichen Gruppe. Math. Ann. 100, 674–686 (1928)CrossRefGoogle Scholar
  44. 44.
    Siemion, I.Z., Siemion, P.J., Krajewski, K.: Chou-Fasman conformational amino acid parameters and the genetic code. Biosystems 36, 231–238 (1995)CrossRefPubMedGoogle Scholar
  45. 45.
    Tao, X., Dafu, D.: The relationship between synonymous codon usage and protein structure. FEBS Lett 434, 93–96 (1998)CrossRefPubMedGoogle Scholar
  46. 46.
    Volkenshtein, M.V.: Biofísica. Editorial MIR, Moscú, Capítulo 17, 621–639 (1985)Google Scholar
  47. 47.
    Woese, C.R.: On the evolution of the genetic code. Proc Natl Acad Sci USA, 54, 1546–1552 (1965)Google Scholar
  48. 48.
    Yang, Z.: Adaptive molecular evolution. In Handbook of statistical genetics, (Balding, M., Bishop, M., Cannings, C., eds), Wiley:London, pp. 327–350 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Research Institute of Tropical Roots, Tuber Crops and Banana (INIVIT)Biotechnology groupSanto DomingoCuba
  2. 2.Faculty of Mathematics Physic and ComputationCentral University of Las VillasCuba
  3. 3.Center of Studies on InformaticsCentral University of Las VillasCuba

Personalised recommendations