Journal of Mathematical Biology

, Volume 52, Issue 1, pp 1–26 | Cite as

Function-valued adaptive dynamics and the calculus of variations

Article

Abstract

Adaptive dynamics has been widely used to study the evolution of scalar-valued, and occasionally vector-valued, strategies in ecologically realistic models. In many ecological situations, however, evolving strategies are best described as function-valued, and thus infinite-dimensional, traits. So far, such evolution has only been studied sporadically, mostly based on quantitative genetics models with limited ecological realism. In this article we show how to apply the calculus of variations to find evolutionarily singular strategies of function-valued adaptive dynamics: such a strategy has to satisfy Euler's equation with environmental feedback. We also demonstrate how second-order derivatives can be used to investigate whether or not a function-valued singular strategy is evolutionarily stable. We illustrate our approach by presenting several worked examples.

Mathematics Subject Classification (2000)

92D15 49-00 

Keywords or phrases

Adaptive dynamics Infinite-dimensional traits Reaction norms Calculus of variations Euler's equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beder, J.H., Gomulkiewicz, R.: Computing the selection gradient and evolutionary response of an infinite-dimensional trait. J. Math. Biol. 36, 299–319 (1998)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Christiansen, F.B.: On conditions for evolutionary stability for a continuously varying character. Am. Nat. 138, 37–50 (1991)CrossRefGoogle Scholar
  3. 3.
    Dieckmann, U., Heino, M., Parvinen, K.: The adaptive dynamics of function-valued traits. (in prep.)Google Scholar
  4. 4.
    Dieckmann, U., Law, R.: The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996)MATHMathSciNetGoogle Scholar
  5. 5.
    Diekmann, O., Gyllenberg, M., Huang, H., Kirkilionis, M., Metz, J.A.J., Thieme, H.R.: On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math. Biol. 43, 157–189 (2001)MATHMathSciNetGoogle Scholar
  6. 6.
    Diekmann, O., Gyllenberg, M., Metz, J.A.J., Thieme, H.R.: On the formulation and analysis of general deterministic structured population models. I. Linear theory. J. Math. Biol. 36, 349–388 (1998)MATHMathSciNetGoogle Scholar
  7. 7.
    Ernande, B., Dieckmann, U., Heino, M.: Adaptive changes in harvested populations: Plasticity and evolution of age and size at maturation. Proc. Royal Soc. London B 271, 415–423 (2004)CrossRefGoogle Scholar
  8. 8.
    Ernande, B., Dieckmann, U.: The evolution of phenotypic plasticity in spatially structured environments: implications of intraspecific competition, plasticity costs and environmental characteristics. J. Evol. Biol 17, 613–628 (2004)CrossRefGoogle Scholar
  9. 9.
    Eshel, I.: Evolutionary and continuous stability. J. Theor. Biol. 103, 99–111 (1983)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Geritz, S.A.H., Kisdi, É., Meszéna, G., Metz, J.A.J.: Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57 (1998)CrossRefGoogle Scholar
  11. 11.
    Geritz, S.A.H., Metz, J.A.J., Kisdi, É., Meszéna, G.: Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 78, 2024–2027 (1997)CrossRefGoogle Scholar
  12. 12.
    Gomulkiewicz, R., Beder, J.H.: The selection gradient of an infinite-dimensional trait. SIAM J. Appl. Math. 56, 509–523 (1996)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Gomulkiewicz, R., Kirkpatrick, M.: Quantitative genetics and the evolution of reaction norms. Evolution 46, 390–411 (1992)CrossRefGoogle Scholar
  14. 14.
    Gyllenberg, M., Metz, J.A.J.: On fitness in structured metapopulations. J. Math. Biol. 43, 545–560 (2001)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Heino, M., Dieckmann, U., Parvinen, K.: Evolution of foraging strategies on resource gradients. (in prep.)Google Scholar
  16. 16.
    Heino, M., Metz, J.A.J., Kaitala, V.: The enigma of frequency-dependent selection. Trends. Ecol. Evol. 13, 367–370 (1998)CrossRefGoogle Scholar
  17. 17.
    Jaffrézic, F., Pletcher, S.D.: Statistical models for estimating the genetic basis of repeated measures and other function-valued traits. Genetics 156, 913–922 (2000)Google Scholar
  18. 18.
    Kingsolver, J.G., Gomulkiewicz, R., Carter, P.A.: Variation, selection and evolution of function-valued traits. Genetica 112–113, 87–104 (2001)Google Scholar
  19. 19.
    Leimar, O.: Evolutionary change and Darwinian demons. Selection 2, 65–72 (2001)CrossRefGoogle Scholar
  20. 20.
    Levins, R.: Some demographic and genetic consequenses of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969)Google Scholar
  21. 21.
    Levins, R.: Extinction. In: M. Gerstenhaber (ed.), Some Mathematical Problems in Biology. American Mathematical Society “Providence” RI, 1970, pp. 77–107Google Scholar
  22. 22.
    Marrow, P., Dieckmann, U., Law, R.: Evolutionary dynamics of predator-prey systems: An ecological perspective. J. Math. Biol. 34, 556–578 (1996)MATHGoogle Scholar
  23. 23.
    Maynard Smith, J.: Evolution and the theory of games. Am. Sci. 64, 41–45 (1976)Google Scholar
  24. 24.
    Meszéna, G., Kisdi, É., Dieckmann, U., Geritz, S.A.H., Metz, J.A.J.: Evolutionary optimisation models and matrix games in the unified perspective of adaptive dynamics. Selection 2, 193–210 (2001)CrossRefGoogle Scholar
  25. 25.
    Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.J.A., van Heerwaarden, J.S.: Adaptive dynamics, a geometrical study of the consequenses of nearly faithful reproduction. In: S.J. van Strien, S.M. Verduyn Lunel (eds.), Stochastic and Spatial Structures of Dynamical Systems, North-Holland, Amsterdam, 1996a, pp. 183–231Google Scholar
  26. 26.
    Metz, J.A.J., Gyllenberg, M.: How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. Royal Soc. London B 268, 499–508 (2001)CrossRefGoogle Scholar
  27. 27.
    Metz, J.A.J., Mylius, S.D., Diekmann, O.: When does evolution optimize? On the relation between types of density dependence and evolutionarily stable life-history parameters. Working paper WP-96-004, IIASA, Laxenburg, Austria. http://www.iiasa.ac.at/cgi-bin/pubsrch?WP96004, 1996b
  28. 28.
    Metz, J.A.J., Nisbet, R.M., Geritz, S.A.H.: How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol. 7, 198–202 (1992)Google Scholar
  29. 29.
    Parvinen, K.: Evolutionary branching of dispersal strategies in structured metapopulations. J. Math. Biol. 45, 106–124 (2002)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Parvinen, K.: On competitive exclusion in metapopulations. (in prep.)Google Scholar
  31. 31.
    Wan, F.Y.M.: Introduction to the Calculus of Variations and its Applications. Chapman & Hall, 1993Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of Mathematics20014 University of TurkuFinland
  2. 2.Adaptive Dynamics NetworkInternational Institute for Applied Systems AnalysisLaxenburgAustria
  3. 3.Institute of Marine ResearchNordnesNorway

Personalised recommendations