Journal of Mathematical Biology

, Volume 50, Issue 5, pp 584–594 | Cite as

Fractal Dimension in Butterflies’ Wings: a novel approach to understanding wing patterns ?

  • A. A. Castrejón-PitaEmail author
  • A. Sarmiento-Galán
  • J. R. Castrejón-Pita
  • R. Castrejón-García


The geometrical complexity in the wings of several, taxonomically different butterflies, is analyzed in terms of their fractal dimension. Preliminary results provide some evidence on important questions about the (dis)similarity of the wing patterns in terms of their fractal dimension. The analysis is restricted to two groups which are widely used in the literature as typical examples of mimicry, and a small number of unrelated species, thus implying the consideration of only a fraction of the wing pattern diversity. The members of the first mimicry ring, composed by the species Danaus plexippus (better known as the monarch butterfly), and the two subspecies Basilarchia archippus obsoleta (or northern viceroy) and Basilarchia archippus hoffmanni (or tropical viceroy), are found to have a very similar value for the fractal dimension of their wing patterns, even though they do not look very similar at first sight. It is also found that the female of another species (Neophasia terlootii), which looks similar to the members of the previous group, does not share the same feature, while the Lycorea ilione albescens does share it. For the members of the second group of mimicry related butterflies, the Greta nero nero and the Hypoleria cassotis, it is shown that they also have very close values for the fractal dimension of their wing patterns. Finally, it is shown that other species, which apparently have very similar wing patterns, do not have the same fractal dimension. A possible, not completely tested hypothesis is then conjectured: the formation of groups by individuals whose wing patterns have an almost equal fractal dimension may be due to the fact that they do share the same developmental raw material, and that this common feature is posteriorly modified by natural selection, possibly through predation.


Fractality in Evolution Morphogenesis Fractal Mimicry Similarity in Ecology Nature Dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. (Springer Press: New York 1996)Google Scholar
  2. 2.
    Beldade, P., Brakefield, P.M.: Nature Reviews Genetics. 3, 442 (2002), e-site at: Scholar
  3. 3.
    Boyajian, G., Lutz, T.: Geology. 20, 983 (1992)Google Scholar
  4. 4.
    Campbell, N.A.: Biology. 3th ed. (Benjamin-Cummings Publishing: California 1993)Google Scholar
  5. 5.
    Carroll, S.B. Grenier, J.K., Weatherbee, S.D.: From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. (Blackwell Scientific, Malden, Mass. 2001); Guss, K.A., Nelson, C.E., Hudson, A., Kraus, M.E., and Carroll, S.B., Science, 292, 1164 (2001)Google Scholar
  6. 6.
    Castrejón García, R., Sarmiento Galán, A., Castrejón Pita, J.R., Castrejón Pita, A.A.: Fractals. 11 (2), 155 (2003)Google Scholar
  7. 7.
    Castrejón Pita, A.A, Castrejón Pita, J.R., Sarmiento Galán, A., Castrejón García, R.: Fractals. 11 (2) 163 (2003)Google Scholar
  8. 8.
    Curtis, H., Barnes, N.S.: Biology. 5th ed. (Worth Publishers Inc.: New York 1989)Google Scholar
  9. 9.
    de la Maza Ramírez, R.: Mariposas Mexicanas. (Fondo de Cultura Económica: México, D. F. 1991)Google Scholar
  10. 10.
    DeVries, P.J.: The Butterflies of Costa Rica and their Natural History, Vol. 1. (Princeton University Press: Princeton, N.J. 1987)Google Scholar
  11. 11.
    Downer, J.: Supersense: Perception in the Animal World, (Guild Publishing: London 1988)Google Scholar
  12. 12.
    Hahn, H.K., Evertsz, J.G., Peitgen, H.O., Fasel, J.H.D.: Fractals. 11 (1), 53 (2003)Google Scholar
  13. 13.
    Haskell, J.P., Ritchie, M. E., Olff, H.: Nature. 418, 527 (2002)Google Scholar
  14. 14.
    Hausdorff, F.: Mathematische Annalen. 79, 157 (1919)Google Scholar
  15. 15.
    Joron, M., Mallet, J.L.B.: Trends in Ecology and Evolution. 13 (11), 461 (1998)Google Scholar
  16. 16.
    Kapan, D.D.: Nature. 409, 338 (2001)Google Scholar
  17. 17.
    Kimball, J.W.: Biology, 4th ed. (Addison-Wesley: Massachusetts 1978)Google Scholar
  18. 18.
    Knill, D.C., Field, D., Kersten, D.: J. Opt. Soc. Am. A 7 (6), 1113 (1990)Google Scholar
  19. 19.
    Llorente-Bousquets, J.E., Oñate-Ocaña, L., Luis-Martinez, A., Vargas-Fernández, I.: Papilionidae y Pieridae de México: distribución geográfica e ilustración. (Universidad Nacional Autónoma de México and CONABIO: México D. F. 1999)Google Scholar
  20. 20.
    McMillan, W.O., Monteiro, A., Kapan, D.D.: Trends in Ecology and Evolution. 17 (3), 125 (2002), e-site:
  21. 21.
    Mallet, J.: Evolutionary Ecology. 13 (7–8), 777 (1999)Google Scholar
  22. 22.
    Mandelbrot, B.B: The Fractal Geometry of Nature. (W. H. Freeman: New York 1977)Google Scholar
  23. 23.
    Nezadal, M. and Zmeskal, O.: Harmonic and Fractal Image Analyzer. 2001, e-code at:
  24. 24.
    Opler, P.A., Pavulaan, H., Stanford, R.E. (coords.): Butterflies of North America. (Jamestown: ND 1995). Northern Prairie Wildlife Research Center:
  25. 25.
    Prasad, R.R., Sreenivasan, K.R.: Phys. Fluids A 2 (5), 792 (1990)CrossRefGoogle Scholar
  26. 26.
    Presgraves, D.C., Balagopalan, L., Abmayr, S.M., Orr, H.A.: Nature. 423, 715 (2003)Google Scholar
  27. 27.
    Ritland, D.B.: The American Midland Naturalist. 140 (1), 1 (1998)Google Scholar
  28. 28.
    Ritland, D.B., Brower, L.P.: Nature. 350, 497 (1991)Google Scholar
  29. 29.
    West, G.B., Brown, J.H., Enquist, B.J.: Science. 276, 122 (1997)Google Scholar
  30. 30.
    Zmeskal, O., Nezadal, M. Buchnicek, M.: Chaos, Solitons, and Fractals. 17 (1), 113 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. A. Castrejón-Pita
    • 1
    Email author
  • A. Sarmiento-Galán
    • 1
  • J. R. Castrejón-Pita
    • 1
  • R. Castrejón-García
    • 2
  1. 1.Instituto de MatemáticasUNAM. Ave. Universidad s/nChamilpaMéxico
  2. 2.Instituto de Investigaciones EléctricasTemixcoMéxico

Personalised recommendations