Journal of Mathematical Biology

, Volume 50, Issue 5, pp 531–558 | Cite as

Characterizing the symmetric equilibrium of multi-strain host-pathogen systems in the presence of cross immunity

Article

Abstract.

We investigate the population dynamics of host-pathogen systems in which the pathogen has a potentially arbitrary number of antigenically distinct strains interacting via cross-immunity. The interior equilibrium configuration of the symmetric multiple strain SIR model with cross-immunity is characterized. We develop an efficient iterative method for numerically solving the equilibrium equation together with a number of informative analytical approximations to the full solution. Equilibrium properties are studied as a function of the number of strains, reproduction number, infectious period, and cross immunity profile. We establish that the prevalence in the system increases monotonically with the number of strains and the reduction in cross immunity. Moreover, we demonstrate the existence of a phase transition separating high prevalence and low prevalence parameter regions, with the critical point being defined by σR0≅1, where σ is the level of cross-immunity and R0 is the reproduction number. Above the threshold, prevalence saturates with increasing numbers of strains as a result of the inclusion of prohibition of co-infection in the model. Below the threshold, prevalence saturates much more rapidly as the number of strains increases - indicating that when cross-protection is sufficiently intense, the selective advantage for a pathogen to increase its diversity is substantially less than in the threshold region. Similarly, there is limited benefit to increased transmissibility (or decreased cross-immunity) both for the high and low diversity pathogen systems compared with systems at the threshold σR0≅1 where small increase in transmissibility can result in significant increase in prevalence.

Key words or phrases:

Infectious disease Mathematical model Strain Cross-immunity Population dynamics Antigenic variation Diversity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.M., May, R.M.: Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press, 1991Google Scholar
  2. 2.
    Andreasen, V., Levin, S.A., Lin, J.: Z. Angew. Math. Mech. 52 (76), 421 (1996)Google Scholar
  3. 3.
    Andreasen, V., Lin, J., Levin, S.A.: J. Math. Biol. 35 (7), 825 (1997)CrossRefGoogle Scholar
  4. 4.
    Callen, H.B. Thermodynamics and an introduction to thermostatistics. Wiley Text Books, second edition, 1985Google Scholar
  5. 5.
    Castillo-Chavez, C., Hethcote, H.W., Andreasen, V., Levin, S.A., Liu, M.W.: J. Math. Biol. 27, 233 (1985)Google Scholar
  6. 6.
    Dawes, J.H., Gog, J.R.: J. Math. Biol. 45 (6), 471 (2002)CrossRefGoogle Scholar
  7. 7.
    Delone, B.N.: In: A.D. Alexsandrov, A.N. Kolmogorov, M.A. Lavrent’ev (eds.), Mathematics, its content, methods, and meaning, vol. 1. Mineola, New York: Dover, second edition, 1999, pp. 356Google Scholar
  8. 8.
    Earn, D.J.D., Dushoff, J., Levin, S.A.: Trends in Ecol. Evol. 17 (7), 334 (2002)Google Scholar
  9. 9.
    Ferguson, N.M., Andreasen, V.: In: S.M. Blower, C. Castillo-Chavez (eds.), Mathematical approaches for emerging and re-emerging infectious diseases: models, methods and theory, vol. 125 of IMA columes on mathematics and its applications. New York: Springer, 2002, pp. 157–169Google Scholar
  10. 10.
    Ferguson, N.M., Donnelly, C.A., Anderson, R.M.: Philos. Trans. R Soc. Lond. B Biol. Sci. 354 (1384), 757 (1999)CrossRefGoogle Scholar
  11. 11.
    Ferguson, N.M., Galvani, A.P., Bush, R.M.: Nature 422 (6930), 428 (2003)Google Scholar
  12. 12.
    Gog, J.R., Grenfell, B.T.: Proc. Natl. Acad. Sci. U S A 99 (26), 17209 (2002)CrossRefGoogle Scholar
  13. 13.
    Gog, J.R., Swinton, J.: J. Math. Biol. 44 (2), 169 (2002)CrossRefGoogle Scholar
  14. 14.
    Goldenfeld, N.: Lectures on phase transitions and the renormalization group, vol. 85 of Frontiers in Physics, Perseus Publishing, 1992Google Scholar
  15. 15.
    Gomes, M., Franco, A., Gomes, M., Medley, G.: Proc. R. Soc. Lond. B Biol. Sci. 271, 617 (2004a)Google Scholar
  16. 16.
    Gomes, M., Medley, G.: In: S.M. Blower, C. Castillo-Chavez (eds.), Mathematical approaches for emerging and re-emerging infectious diseases: models, methods and theory, vol. 125 of IMA columes on mathematics and its applications. New York: Springer, 2002, pp. 171–191Google Scholar
  17. 17.
    Gomes, M., Medley, G., Nokes, D.: Proc. Roy. Soc. Lond. B 269, 227 (2002)CrossRefGoogle Scholar
  18. 18.
    Gomes, M., White, L.J., Medley, G.: J. Theor. Biol. (in press) (2004b)Google Scholar
  19. 19.
    Gupta, S., Anderson, R.M.: Parasitol Today 15 (12), 497 (1999)Google Scholar
  20. 20.
    Gupta, S., Ferguson, N., Anderson, R.: Science 280 (5365), 912 (1998)Google Scholar
  21. 21.
    Gupta, S., Maiden, M.C.J., Feavers, I.M., Nee, S., May, R.M., Anderson, R.M.: New Med. 2 (4), 437 (1996)Google Scholar
  22. 22.
    Gupta, S., Trenholme, K., Anderson, R.M., Day, K.P.: Science 263 (5149), 961 (1994)Google Scholar
  23. 23.
    Levin, S.A., Dushoff, J., Plotkin, J.B.: Math. Biosci. 188, 17 (2004)CrossRefGoogle Scholar
  24. 24.
    Lin, J., Andreasen, V., Casagrandi, R., Levin, S.A.: J. Theor. Biol. 222 (4), 437 (2003)Google Scholar
  25. 25.
    Lin, J., Andreasen, V., Levin, S.A.: Math. Biosci. 162 (1–2), 33 (1999)Google Scholar
  26. 26.
    May, R.M.: Stability and complexity in model ecosystems. Princeton: Princeton University Press, 1973Google Scholar
  27. 27.
    May, R.M., Nowak, M.: J. Theor. Biol. 170, 95 (1994)CrossRefGoogle Scholar
  28. 28.
    May, R.M., Nowak, M.A.: Proc. R. Soc. Lond. 261, 209 (1995)Google Scholar
  29. 29.
    Nowak, M., May, R.M.: Proc. R. Soc. Lond. B 255, 81 (1994)Google Scholar
  30. 30.
    Rohani, P., Earn, D.J., Finkenstadt, B., Grenfell, B.T.: Proc. R Soc. Lond. B Biol. Sci. 265 (1410), 2033 (1998)Google Scholar
  31. 31.
    UNICEF, Malaria, UNICEF, 2003Google Scholar
  32. 32.
    WHO/UNICEF, Africa Malaria Report, 2003 WHO/UNICEFGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of Infectious Disease EpidemiologyImperial College LondonLondonUK

Personalised recommendations