Advertisement

Journal of Mathematical Biology

, Volume 50, Issue 2, pp 189–207 | Cite as

Derivation of hyperbolic models for chemosensitive movement

  • Francis FilbetEmail author
  • Philippe Laurençot
  • Benoît Perthame
Article

Abstract.

A Chapman-Enskog expansion is used to derive hyperbolic models for chemosensitive movements as a hydrodynamic limit of a velocity-jump process. On the one hand, it connects parabolic and hyperbolic chemotaxis models since the former arise as diffusion limits of a similar velocity-jump process. On the other hand, this approach provides a unified framework which includes previous models obtained by ad hoc methods or methods of moments. Numerical simulations are also performed and are motivated by recent experiments with human endothelial cells on matrigel. Their movements lead to the formation of networks that are interpreted as the beginning of a vasculature. These structures cannot be explained by parabolic models but are recovered by numerical experiments on hyperbolic models. Our kinetic model suggests that some kind of local interactions might be enough to explain them.

Keywords

Endothelial Cell Numerical Experiment Kinetic Model Mathematical Biology Previous Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177 (1980)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chalub, F.A.C.C., Markovich, P., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. To appear in Monatsh. Math.Google Scholar
  3. 3.
    Chaplain, M.A.J.: A vascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modelling of the stages of tumor development. Math. Comput. Modelling 23, 47–87 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dolak, Y., Hillen, T.: Cattaneo models for chemotaxis, numerical solution and pattern formation. J. Math. Biol. 46, 461–478 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dolak, Y., Schmeiser, C.: Kinetic models for chemotaxis: Hydrodynamic limits and the back-of-the-wave problem. ANUM preprintGoogle Scholar
  6. 6.
    Filbet, F., Shu, C.-W.: Approximation of Hyperbolic Models for Chemosensitive Movement. MAPMO preprintGoogle Scholar
  7. 7.
    Gajewski, H., Zacharias, K.: Global behavior of a reaction diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)zbMATHGoogle Scholar
  8. 8.
    Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., Di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90, 118101 (2003)CrossRefGoogle Scholar
  9. 9.
    Godlewski, E., Raviart, P.-A.: Numerical approximation of hyperbolic systems of conservation laws. Appl. Math. Sci. 118, Springer, New York, 1996Google Scholar
  10. 10.
    Herrero, M.A., Medina, E., Velázquez, J.J.L.: Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10, 1739–1754 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hillen, T., Othmer, H.G.: The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math. 61, 751–775 (2000)Google Scholar
  12. 12.
    Hillen, T.: Transport equations and chemosensitive movement. Habilitation Thesis, University of Tübingen, 2001Google Scholar
  13. 13.
    Hillen, T.: Hyperbolic models for chemosensitive movement. Math. Models Methods Appl. Sci. 12, 1007–1034 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Horstmann, D.: From 1970 until now: The Keller-Segel model in chemotaxis and its consequences I. Jahresberichte der DMV, 105, 103–165 (2003)Google Scholar
  15. 15.
    Horstmann, D.: From 1970 until now: The Keller-Segel model in chemotaxis and its consequences II. Jahresberichte der DMV, 106, 51–69 (2004)Google Scholar
  16. 16.
    Hwang, H.J., Kang, K., Stevens, A.: Global solutions of nonlinear transport equations for chemosensitive movement. To appear in SIAM J. Math. Anal.Google Scholar
  17. 17.
    Keller, E.F., Segel, L.A.: Traveling band of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)Google Scholar
  18. 18.
    LeVeque, R.: Numerical methods for conservation laws. Birkhäuser, Basel, 1992Google Scholar
  19. 19.
    Levine, H.A., Nilsen-Hamilton, M., Sleeman, B.D.: Mathematical modelling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42, 195–238 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, T.P.: Hyperbolic conservation laws with relaxation. Comm. Math. Phys. 108, 153–175 (1987)Google Scholar
  21. 21.
    Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Appl. Sci. 5, 581–601 (1995)zbMATHGoogle Scholar
  22. 22.
    Makino, T., Perthame, B.: Sur les solutions à symétrie sphérique de l’équation d’Euler-Poisson pour l’évolution d’étoiles gazeuses. Japan J. Appl. Math. 7, 165–170 (1990)zbMATHGoogle Scholar
  23. 23.
    Marrocco, A.: 2D simulation of chemotaxis bacteria aggregation. ESAIM:M2AN, 37 (4), 617–630 (2003)Google Scholar
  24. 24.
    Mirshahi, M.: Personnal communicationGoogle Scholar
  25. 25.
    Nieto, J., Poupaud, F., Soler, J.: High-field limit for the Vlasov-Poisson-Fokker-Planck system. Arch. Rational Mech. Anal. 158, 29–59 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math. 62, 1222–1250 (2002)Google Scholar
  27. 27.
    Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)CrossRefzbMATHGoogle Scholar
  28. 28.
    Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biol. Biophys. 15, 311–338 (1953)Google Scholar
  29. 29.
    Perthame, B.: Kinetic formulation of conservation laws. Oxford Univ. Press, 2002Google Scholar
  30. 30.
    Senba, T., Suzuki, T.: Chemotactic collapse in parabolic-elliptic systems of mathematical biology. Adv. Diff. Eqns. 6, 21–50 (2001)zbMATHGoogle Scholar
  31. 31.
    Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. The EMBO J. 22, 1771–1779 (2003)CrossRefGoogle Scholar
  32. 32.
    Stevens, A.: Derivation of chemotaxis-equations as limit dynamics of moderately interacting stochastic many particle systems. SIAM J. Appl. Math. 61, 183–212 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Velázquez, J.J.L.: Stability of some mechanisms of chemotactic aggregation. SIAM J. Appl. Math. 62, 1581–1633 (2002)Google Scholar
  34. 34.
    Zeldovich, Ya.B.: Gravitational instability : an approximate theory for large density perturbations. Astron. Astrophys. 5, 84 (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Francis Filbet
    • 1
    Email author
  • Philippe Laurençot
    • 2
  • Benoît Perthame
    • 3
  1. 1.Mathématiques et Applications, Physique Mathématique d’Orléans, CNRS UMR 6628Université d’OrléansOrléans cedex 2France
  2. 2.Mathématiques pour l’Industrie et la Physique, CNRS UMR 5640Université Paul Sabatier – Toulouse 3Toulouse cedex 4France
  3. 3.Département de Mathématiques Appliquées, CNRS UMR 8553Ecole Normale SupérieureParis cedex 05France

Personalised recommendations