Journal of Mathematical Biology

, Volume 51, Issue 2, pp 217–246 | Cite as

A model of intracellular transport of particles in an axon

  • Avner Friedman
  • Gheorghe Craciun


In this paper we develop a model of intracellular transport of cell organelles and vesicles along the axon of a nerve cell. These particles are moving alternately by processive motion along a microtubule with the aid of motor proteins, and by diffusion. The model involves a degenerate system of diffusion equations. We prove a maximum principle and establish existence and behavior of a unique solution. Numerical results show how the transportation of mass depends on the relevant parameters of the model.

Mathematics Subject Classification (2000)

35E99 35J70 92C35 

Key words or phrases

Intracellular transport Nerve cell Processive motor proteins Diffusion Maximum principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, B. et al.: Molecular Biology of the Cell. 3rd edition, Garland Publishing, New York, 1994Google Scholar
  2. 2.
    Blum, J.J., Carr, D.D., Reed, M.C.: Theoretical Analysis of lipid transport in sciatic nerve. Biophysica et Biochimica Acta 1125, 313–320 (1992)Google Scholar
  3. 3.
    Blum, J.J., Reed, M.C.: The Transport of Organelles in Axons. Math. Biosci. 90, 233–245 (1988)CrossRefGoogle Scholar
  4. 4.
    Blum, J.J., Reed, M.C.: A Model for Slow Axonal Transport and its Application to Neurofilamentous Neuropathies. Cell Motility Cytoskeleton 12, 53–65 (1989)CrossRefGoogle Scholar
  5. 5.
    Brown, A.: Slow axonal transport: stop and go traffic in the axon. Nature Reviews Molecular Cell Biology 1, 153–156 (2000)CrossRefPubMedGoogle Scholar
  6. 6.
    Chang, S., Svitkina, T.M., Borisy, G.G., Popov, S.V.: Speckle microscopic evaluation of microtubule transport in growing nerve processes. Nat. Cell Biol. Nov 1 (7), E171–3 (1999)Google Scholar
  7. 7.
    Friedman, A.: Partial Differential Equations. Krieger Publishing Company, Huntington, New York, 1976Google Scholar
  8. 8.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations. Springer Verlag, 2nd edition, New York, 1983Google Scholar
  9. 9.
    Gross, G.W., Beidler, L.M.: A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibers of the garfish olfactory nerve. J. Neurobiol. 6, 213–232 (1975)CrossRefPubMedGoogle Scholar
  10. 10.
    Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer Verlag, Berlin, 1994Google Scholar
  11. 11.
    Odell, G.M.: Theories of axoplasmic transport. In: Lectures on the Mathematics in the Life Sciences. Am. Math. Soc., Providence, 1977, pp. 141–186Google Scholar
  12. 12.
    Ölveczky, B.P., Verkman, A.S.: Monte Carlo Analysis of Obstructed Diffusion in Three Dimensions: Applications to Molecular Diffusion in Organelles. Biophys. J. 74, 2722–2730 (1998)PubMedGoogle Scholar
  13. 13.
    Protter, M.H., Weinberger, H.F.: Maximum principles in differential equations. Prentice-Hall, Englewood Cliffs, N.J., 1967Google Scholar
  14. 14.
    Reed, M.C., Blum, J.J.: Theoretical Analysis of radioactivity profiles during fast axonal transport: Effects of deposition and turnover. Cell Motility Cytoskeleton 6, 620–627 (1986)CrossRefGoogle Scholar
  15. 15.
    Rubinow, S.I., Bloom, J.J.: A theoretical approach to the analysis of axonal transport. Biophys. J. 30, 137–148 (1980)PubMedGoogle Scholar
  16. 16.
    Seksek, O., Biwersi, J., Verkman, A.S.: Translational Diffusion of Macromolecule-sized Solutes in Cytoplasm and Nucleus. J. Cell Biol. 138, 131–142 (1997)CrossRefPubMedGoogle Scholar
  17. 17.
    Smith, D.A., Simmons, R.M.: Models of Motor Assisted Transport of Intracellular Particles Biophys. J. 80, 45–68 (2001)Google Scholar
  18. 18.
    Takenaka, T., Gotoh, H.: Simulation of axoplasmic transport. J. Theoret. Biol. 107, 579–601 (1984)Google Scholar
  19. 19.
    Tsukita, S., Ishikawa, H.: The cytoskeleton of myelinated axons: serial section study. Biomedical Research 2, 424–437 (1981)Google Scholar
  20. 20.
    Vale, R.D., Reese, T.S., Sheetz, M.P.: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985)CrossRefPubMedGoogle Scholar
  21. 21.
    Vale, R.D., Schnapp, B.J., Reese, T.S., Sheetz, M.P.: Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell 40, 449–454 (1985)CrossRefPubMedGoogle Scholar
  22. 22.
    Wang, L., Brown, A.: Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Molecular Biology of the Cell 12, 3257–3267 (2001)PubMedGoogle Scholar
  23. 23.
    Weiss, D.G., Gross, G.W.: Intracellular transport in nerve cell processes: The chromatographic dynamics of axoplasmic transport. In: Biological Structures and Coupled Flows, A. Oplatka, M. Balaban (eds.), Academic, New York, 1983, pp. 378–396Google Scholar
  24. 24.
    Xu, Z., Tung, V.: Overexpression of neurofilament subunit M accelerates neurofilament transport. Brain Res. 866, 326–332 (2000)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Mathematical Biosciences InstituteThe Ohio State UniversityColumbus

Personalised recommendations