Advertisement

Journal of Mathematical Biology

, Volume 49, Issue 3, pp 272–292 | Cite as

Refining the measurement of rate constants in the BIAcore

  • David A. EdwardsEmail author
Article

Abstract.

When estimating rate constants using the BIAcore surface plasmon resonance (SPR) biosensor, one must have an accurate mathematical model to interpret sensogram data. Several models of differing complexity are discussed, including the effective rate constant (ERC) approach. This model can be shown formally to be good within O(Da) in the limit of small Damköhler number Da, which is the ratio of the reaction rate to the rate of transport to the surface. Numerical results are presented that show that except for very slow reactions, parameter estimates from the ERC model are very close to those estimated using a more complicated model. The BIAcore measures the behavior of an evanescent wave whose signal strength decays as it penetrates into the device. It is shown that this decay does not appreciably affect the sensogram readout at low Da, but at moderate Da can lead to situations where two vastly different rate constants can produce the same short-time sensogram data.

Key words or phrases:

Biomolecular reactions Rate constants Asymptotics Integro-differential equations Dextran layer Evanescent wave BIAcore 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basmadjian, D.: The effect of flow and mass transport in thrombogenesis. Ann. Biomed. Eng. 18, 685–709 (1990)Google Scholar
  2. 2.
    Christensen, L.L.H.: Theoretical analysis of protein concentration determination using biosensor technology under conditions of partial mass transport limitation. Anal. Biochem. 249, 153–164 (1997)CrossRefGoogle Scholar
  3. 3.
    Edwards, D.A.: Estimating rate constants in a convection-diffusion system with a boundary reaction. IMA J. Appl. Math. 62, 89–112 (1999)Google Scholar
  4. 4.
    Edwards, D.A.: Biochemical reactions on helical structures. SIAM J. Appl. Math. 60, 1425–1446 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Edwards, D.A.: The effect of a receptor layer on the measurement of rate constants. Bull. Math. Bio. 63, 301–327 (2001)CrossRefGoogle Scholar
  6. 6.
    Edwards, D.A., Goldstein, B., Cohen, D.S.: Transport effects on surface-volume biological reactions. J. Math. Bio. 39, 533–561 (1999)zbMATHGoogle Scholar
  7. 7.
    Edwards, D.A., Jackson, S.A.: Testing the validity of the averaged approximation for the IAsys. Univ. DE Technical Report 2002-3 (2002)Google Scholar
  8. 8.
    Edwards, D.A., Jackson, S.A.: Testing the validity of the effective rate constant approximation for surface reaction with transport. Appl. Math. Lett. 15, 547–552 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Edwards, P.R., Gill, A., Pollardknight, D.V., Hoare, M., Buckle, P.E., Lowe, P.A., Leatherbarrow, R.J.: Kinetics of protein-protein interactions at the surface of an optical biosensor. Anal. Biochem. 231, 210–217 (1995)CrossRefGoogle Scholar
  10. 10.
    Garland, P.B.: Optical evanescent wave methods for the study of biomolecular reactions. Quart. Rev. Biophys. 29, 91–117 (1996)Google Scholar
  11. 11.
    Glaser, R.: Antigen-antibody binding and mass transport by convection and diffusion to a surface: A two-dimensional computer model of binding and dissociation kinetics. Anal. Biochem. 213, 152–161 (1993)CrossRefGoogle Scholar
  12. 12.
    Glaser, R.W., Hausdorf, G.: Binding kinetics of an antibody against HIV p24 core protein measured with real-time biomolecular interaction analysis suggest a slow conformational change in antigen p24. J. Immun. Meth. 189, 1–14 (1996)CrossRefGoogle Scholar
  13. 13.
    Goldstein, B., Dembo, M.: Approximating the effects of diffusion on reversible reactions at the cell surface: Ligand-receptor kinetics. Biophys. J. 68, 1222–1230 (1995)Google Scholar
  14. 14.
    Hall, D.R., Gorgani, N.N., Altin, J.G., Winzor, D.J.: Theoretical and experimental considerations of the pseudo-first-order approximation in conventional kinetic analysis of IAsys biosensor data. Anal. Biochem. 253, 145–155 (1997)CrossRefGoogle Scholar
  15. 15.
    Hoffman, T.L., Canziani, G., Jia, L., Rucker, J., Doms, R.W.: A biosensor assay for studying ligand-membrane receptor interactions: Binding of antibodies and HIV-1 Env to chemokine receptors. Proc. NAS 97, 11215–11220 (2000)CrossRefGoogle Scholar
  16. 16.
    Johnsson, B., Löfås, S., Lindquist, G., Edström, Å., Müller Hillgren, R.-M., Hansson, A.: Comparison of methods for immobilization to carboxymethyl dextran surfaces by analysis of the specific activity of monoclonal antibodies. J. Mol. Recogn. 8, 125–131 (1995)Google Scholar
  17. 17.
    Karlsson, R., Fält, A.: Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immun. Meth. 200, 121–133 (1997)CrossRefGoogle Scholar
  18. 18.
    Karlsson, R., Michaelson, A., Mattson, L.: Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J. Immun. Meth. 145, 229–240 (1991)CrossRefGoogle Scholar
  19. 19.
    Lee, M., Rhodes, A.L., Wyatt, M.D., Forrow, S., Hartley, J.A.: GC-base sequence recognition by oligo(imidazolecarboxamide) and C-terminus-modified analogs of distamycin deduced from circular dichroism, proton nuclear magnetic resonance, and methidiumpropyl-ethylene-diaminetetraacetate- iron(II) footprinting studies. Biochem. 32, 4237–4245 (1993)Google Scholar
  20. 20.
    Liedberg, B., Lundstrom, I., Stenberg, R.: Principles of biosensing with an extended coupling matrix and surface-plasmon resonance. Sens. Actuators B. 11, 63–72 (1993)CrossRefGoogle Scholar
  21. 21.
    Löfås, S., Johnsson, B.: A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990)Google Scholar
  22. 22.
    Lok, B.K., Cheng, Y.-L., Robertson, C.R.: Protein adsorption on crosslinked polydimethylsiloxane using total internal reflection fluorescence. J. Coll. Int. Sci. 91, 104–116 (1983)CrossRefGoogle Scholar
  23. 23.
    Mason, T., Pineda, A.R., Wofsy, C., Goldstein, B.: Effective rate models for the analysis of transport-dependent biosensor data. Math. Biosci. 159, 123–144 (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    Morton, T.A., Myszka, D.G., Chaiken, I.M.: Interpreting complex binding kinetics from optical biosensors: A comparison of analysis by linearization, the integrated rate equations, and numerical integration. Anal. Biochem. 227, 176–185 (1995)CrossRefGoogle Scholar
  25. 25.
    Myszka, D.G., He, X., Dembo, M., Morton, T.A, Goldstein, B.: Extending the range of rate constants available from BIAcore: Interpreting mass transport influenced binding data. Biophys. J. 75, 583–594 (1998)Google Scholar
  26. 26.
    Parsons, I.D., Stockley, P.G.: Quantitation of the Escherichia coli methionine repressor-operator interaction by surface plasmon resonance is not affected by the presence of a dextran matrix. Anal. Biochem. 254, 82–87 (1997)CrossRefGoogle Scholar
  27. 27.
    Raghavan, M., Chen, M.Y., Gastinel, L.N., Bjorkman, P.J.: Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin ligand. Immunity 1, 303–315 (1994)CrossRefGoogle Scholar
  28. 28.
    Schuck, P.: Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport. Biophys. J. 70, 1230–1249 (1996)Google Scholar
  29. 29.
    Schuck, P.: Reliable determination of binding affinity and kinetics using surface plasmon resonance biosensors. Curr. Opin. Biotech. 8, 498–502 (1997)CrossRefGoogle Scholar
  30. 30.
    Schuck P., Minton, A.P.: Analysis of mass transport-limited binding kinetics in evanescent wave biosensors. Anal. Biochem. 240, 262–272 (1996)CrossRefGoogle Scholar
  31. 31.
    Stenberg, E., Persson, B., Roos, H., Urbaniczky, C.: Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Coll. Int. Sci. 143, 513–526 (1991)CrossRefGoogle Scholar
  32. 32.
    Szabo, A., Stolz, L., Granzow, R.: Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr. Opin. Struct. Bio. 5, 699–705 (1995)CrossRefGoogle Scholar
  33. 33.
    Turitto, V.T., Baumgartner, H.R.: Platelet deposition on subendothelium exposed to flowing blood: mathematical analysis of physical parameters. Trans. Am. Soc. Artif. Int. Org. 21, 593–601 (1975)Google Scholar
  34. 34.
    Wofsy, C., Goldstein, B.: Effective rate models for receptors distributed in a layer above a surface: Application to cells and BIAcore. Biophys. J. 82, 1743–1755 (2002)Google Scholar
  35. 35.
    Yarmush, M.L., Patankar, D.B., Yarmush, D.M.: An analysis of transport resistance in the operation of BIAcore; implications for kinetic studies of biospecific interactions. Molec. Immun. 33, 1203–1214 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA

Personalised recommendations