Journal of Mathematical Biology

, Volume 48, Issue 2, pp 218–242 | Cite as

Macrophage response to Mycobacteriumtuberculosis infection

  • D. Gammack
  • C.R. Doering
  • D.E. Kirschner


The immune response to Mycobacteriumtuberculosis (Mtb) infection is the formation of multicellular lesions, or granolomas, in the lung of the individual. However, the structure of the granulomas and the spatial distribution of the immune cells within is not well understood. In this paper we develop a mathematical model investigating the early and initial immune response to Mtb. The model consists of coupled reaction-diffusion-advection partial differential equations governing the dynamics of the relevant macrophage and bacteria populations and a bacteria-produced chemokine. Our novel application of mathematical concepts of internal states and internal velocity allows us to begin to study this unique immunological structure. Volume changes resulting from proliferation and death terms generate a velocity field by which all cells are transported within the forming granuloma. We present numerical results for two distinct infection outcomes: controlled and uncontrolled granuloma growth. Using a simplified model we are able to analytically determine conditions under which the bacteria population decreases, representing early clearance of infection, or grows, representing the initial stages of granuloma formation.

Key words or phrases

Reaction-diffusion-advection Granuloma Mycobacterium tuberculosis Internal states Internal velocity Immune response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloom, B.R.: Tuberculosis: pathogenesis, protection, and control. ASM Press, Washington, DC, 1994Google Scholar
  2. 2.
    Chiu, C., Hoppensteadt, F.C.: Mathematical models and simulations of bacterial growth and chemotaxis in a diffusion gradient chamber. J. Math. Biol. 42, 120–144 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Collins, H.L., Kaufmann, S.H.E.: The many faces of host responses to tuberculosis. Immunol. 103, 1–9 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Comstock, G.W., Livesay, V.T., Woolpert, S.F.: The prognosis of a positive tuberculin reaction in childhood and adolescence. Am. J. Epidemiol. 99, 131–138 (1974)Google Scholar
  5. 5.
    Dannenberg, A.M., Rook, G.S.W.: Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses - dual mechanisms that control bacillary multiplication. In: Bloom,~B.R., (ed) Tuberculosis: pathogenesis, protection, and control. ASM Press, Washington, DC, 1994Google Scholar
  6. 6.
    DesJardin, L.E., Kaufman, T.M., Potts, B., Kutzbach, B., Yi, H., Schlesinger, L.S.: Mycobacterium tuberculosis-infected human macrophages exhibit enhanced cellular adhesion with increased expression of LFA-1 and ICAM-1 and reduced expression and/or function of complement receptors, FcγRii and the mannose receptor. Microbiol. 148, 3161–3171 (2002)Google Scholar
  7. 7.
    Emile, J.-.F, Patey, N., Altare, F., Lamhamedi, S., Jouanguy, E., Boman, F., Quillard, J., Lecomte-Houcke, M., Verola, O., Mousnier, J.-F., Dijoud, F., Blanche, S., Fischer, A., Brousse, N., Casanova, J.-L.: Correlation of granuloma structure with clinical outcome defines two types of idiopathic disseminated BCG infection. J. Pathology 181, 25–30 (1997)CrossRefGoogle Scholar
  8. 8.
    Flesch, I.E., Kaufmann, S.H.: Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect. Immun. 58, 2675–2677 (1990)Google Scholar
  9. 9.
    Flynn, J.L., Chan, J.: Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001)CrossRefGoogle Scholar
  10. 10.
    Flynn, J.L., Chan, J.: Tuberculosis: latency and reactivation. Infect. Immun. 69, 4195–4201 (2001)CrossRefGoogle Scholar
  11. 11.
    Höfer, T., Sherratt, J.A., Maini, P.K.: Cellular pattern formation during Dictyostelium aggregation. Phy. D 85, 425–444 (1995)Google Scholar
  12. 12.
    Jackson, T.L., Byrne, H.M.: A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164, 17–38 (2000)CrossRefzbMATHGoogle Scholar
  13. 13.
    Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.: Immuno biology. Garland, New York, 1994Google Scholar
  14. 14.
    Keller, E.F., Segel, L.A.: Model for chemotaxis. J. theor. Biol. 30, 225–234 (1971)Google Scholar
  15. 15.
    Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. theor. Biol. 30, 235–248 (1971)Google Scholar
  16. 16.
    Kirschner, D., Perelson, A.: A model for the immune system response to HIV: AZT treatment studies. In: Axelrod, A.O., Kimmel, D., and Langlais, M., (eds) Mathematical Population Dynamics: Analysis of Hetergeneity and Theory of Epidemics, Wuerz Publishing, p. 295–310 (1995)Google Scholar
  17. 17.
    Lauffenburger, D.A., Linderman, J.J.: Receptors: models for binding, trafficking, and signaling. Oxford University Press, New York, 1993Google Scholar
  18. 18.
    Lev Bar Or, R.: Feedback mechanisms between T helper cells and macrophages in the determination of the immune response. Math. Biosci. 163, 35–58 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lin, Y., Zhang, M., Barnes, P.F.: Chemokine production by a human alveola epithelial cell line in response to mycobacterium tuberculosis. Infect. Immun. 66, 1121–1126 (1998)Google Scholar
  20. 20.
    Mayanja-Kizza, H., Johnson, J.L., Hirsch, C.S., Peters, P., Surewicz, K., Wu, M., Nalugwa, G., Mubiru, F., Luzze, H., Wajja, A., Aung, H., Ellner, J.J., Whalen, C., Toossi, Z.: Macrophage-activating cytokines in human immunodeficiency virus type 1-infected and -uninfected patients with pulmonary tuberculosis. J. Infect. Dis. 183, 1805–1809 (2001)CrossRefGoogle Scholar
  21. 21.
    Mims, C., Dimmock, N., Nash, A., Stephen, J.: Mims’ Pathogenesis of Infectious Disease. Academic Press, New York, 1995Google Scholar
  22. 22.
    Myerscough, M.R., Maini, P.K., Painter, K.J.: Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60, 1–26 (1998)CrossRefzbMATHGoogle Scholar
  23. 23.
    NAG Ltd.: NAG Fortran Library Manual, Mark 19 edition, 1999Google Scholar
  24. 24.
    Nathan, C.F., Murray, H.W., Wiebe, M.E., Rubin, B.Y.: Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 158, 670–689 (1983)Google Scholar
  25. 25.
    Owen, M.R., Sherratt, J.A.: Pattern formation and spatiotemporal irregularity in a model for macrophage-tumour interactions. J. theor. Biol. 189, 63–80 (1997)CrossRefGoogle Scholar
  26. 26.
    Owen, M.R., Sherratt, J.A.: Mathematical modelling of macrophage dynamics in tumours. Math. Models Methods Appl. Sci. 9, 513–539 (1999)CrossRefzbMATHGoogle Scholar
  27. 27.
    Painter, K.J., Maini, P.K., Othmer, H.G.: Development and applications of a model for cellular respose to multiple chemotactic cues. J. Math. Biol. 41, 285–314 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Pan, Z.K., Chen, L.-Y., Cochrane, C.G., Zuraw, B.L.: fMet-Leu-Phe stimulates proinflammatory cytokine gene expression in human peripheral blood monocytes: the role of phosphatidylinositol 3-kinase. J. Immunol. 164, 404–411 (2000)Google Scholar
  29. 29.
    Pilyugin, S.S.: Modeling immune responses with handling time. Bull. Math. Biol. 62, 869–890 (2000)CrossRefGoogle Scholar
  30. 30.
    Sannomiya, P., Craig, R.A., Clewell, D.B., Suzuki, A., Fujino, M., Till, G.O., Marasco, W.A.: Characterization of a class of nonformylated enterococcus faecalis-derived neutrophil chemotactic peptides: the sex pheromones. Proc. Natl. Acad. Sci. USA 87, 66–70 (1990)Google Scholar
  31. 31.
    Saukkonen, J.J., Bazydlo, B., Thomas, M., Strieter, R.M., Keane, J., Kornfeld, H.: β-chemokines are induced by mycobacterium tuberculosis and inhibit its growth. Infect. Immun. 70, 1684–1693 (2002)CrossRefGoogle Scholar
  32. 32.
    Schluger, N.W., Rom, W.N.: The host immune response to tuberculosis. Am. J. Respir. Crit. Care Med. 157, 679–691 (1998)Google Scholar
  33. 33.
    Sherratt, J.A.: Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel equations as an approxination to a detailed model. Bull. Math. Biol. 56, 129–146 (1994)zbMATHGoogle Scholar
  34. 34.
    Sherratt, J.A., Sage, E.H., Murray, J.D.: Chemical control of eukaryotic cell movement: A new model. J. theor. Biol. 162, 23–40 (1993)CrossRefGoogle Scholar
  35. 35.
    Sozzani, S., Luini, W., Molino, M., Jílek, P., Bottazzi, B., Cerletti, C., Matsushima, K., Mantovani, A.: The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine. J. Immunol. 147, 2215–2221 (1991)Google Scholar
  36. 36.
    Stout, R.D., Bottomly, K.: Antigen-specific activation of effector macrophages by IFN-gamma producing (TH1) t cell clones. failure of IL-4-producing (TH2) t cell clones to activate effector function in macrophages. J. Immunol. 142, 760–765 (1989)Google Scholar
  37. 37.
    Tran, C.L., Jones,~A.D., Donaldson, K.: Mathematical model of phagocytosis and inflammation after the inhalation of quartz at different concentrations. Scand. J. Work Environ. Health 21, 50–54 (1995)Google Scholar
  38. 38.
    van Crevel, R., Ottenhoff, T.H.M., van der Meer, J.W.M.: Innate immunity to mycobacterium tuberculosis. Clin. Microbiol. Rev. 15, 294–309 (2002)CrossRefGoogle Scholar
  39. 39.
    Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol. 14, 39–69 (1997)Google Scholar
  40. 40.
    Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth ii: Modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171–211 (1999)zbMATHGoogle Scholar
  41. 41.
    WHO.: WHO Report 2001: Global Tuberculosis Control. Technical report, World Health Organization, 2001Google Scholar
  42. 42.
    Wigginton, J.E., Kirschner, D.: A model to predict cell-mediated immune regulatory mechanisms during human infection with mycobacterium tuberculosis. J. Immunol. 166, 1951–1967 (2001)Google Scholar
  43. 43.
    Wodarz, D., Lloyd, A.L., Jansen, V.A.A., Nowak, M.A.: Dynamics of macrophage and T cell infection by HIV. J. theor. Biol. 196, 101–113 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • D. Gammack
    • 1
  • C.R. Doering
    • 2
  • D.E. Kirschner
    • 3
  1. 1.Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolUSA
  2. 2.Department of Mathematics, Michigan Center for Theoretical Physics,University of MichiganUSA
  3. 3.Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolUSA

Personalised recommendations